Das Projekt "Development of new intermodal loading units and dedicated adaptors for the trimodal transport of bulk materials in Europe (TRIMOTRANS)" wird vom Umweltbundesamt gefördert und von Zentrum für angewandte Forschung und Technologie e.V. durchgeführt. Objective: The constitution of the common European market is accompanied by continuously increasing cross-border goods and passenger traffic. Road transportation is facing a rapidly increasing congestion whilein the contrary the available capacities in railway transportation as well as inland waterwaytransportation are being underutilised. A redistribution of the carriage of goods is urgently needed, but up to now the most important obstacles consists in the incompatible interfaces between the various carriers and the diversity of loading devices being used in the EU. Main objective of the project is the development of new intermodal loading units including devices (ISO-bulk container and Roll-off container), capable adaptors and mobile fixtures suitable for the trimodal transport of bulk and packaged goods at road, railway and inland waterways. Essential element of the project is the design and integration of innovative adaptors for lifting and shifting operations of the loading units. This will lead to an optimum on intermodal compatibility. The goals are in conformity with the aims of the Specific Programme 'Sustainable Surface Transport', research domain 3.16. 'Development of equipment for fast loading / unloading of intermodal transport units'. By application of the new loading units the logistic chain can be set up without changing the loading unit throughout the whole door-to-door transport process. The transhipping procedures do not require crane technology any more and the costs will be reduced substantially. The uniformity of the specialinternal features as well as the compliance with the ISO-container dimensions will contribute to the harmonisation of loading units. The projects includes the development of containers, adaptors and mobile units, test and demonstration of two prototypes and dissemination and exploitation of the results. The consortium consists of ten partner with six SMEs from five countries (G, HU, CH, A,CR)
Das Projekt "Mesoskaliges Netzwerk zur Überwachung von Treibhausgas- und Schadstoffemissionen" wird vom Umweltbundesamt gefördert und von Technische Universität München, Fakultät für Elektrotechnik und Informationstechnik , Lehrstuhl für Erneuerbare und Nachhaltige Energiesysteme durchgeführt. Aktuelle wissenschaftliche Studien legen nahe, dass die aktuelle Erderwärmung durch Treibhausgasemissionen hervorgerufen wird, die vom Menschen verursacht sind. Um gegen diese Entwicklung geeignete Maßnahmen ergreifen zu können bzw. um zu überprüfen, ob solche Maßnahmen von Erfolg gekrönt sind, ist es notwendig, die Schadstoffkonzentrationen inklusive der zugehörigen Emissionsquellen genau zu kennen. Diese Informationen sind bisher jedoch sehr lückenhaft und beruhen auf sogenannten 'bottom-up' Berechnungen. Da diese Kalkulationen nicht auf direkten Messungen beruhen, weisen sie große Ungenauigkeiten auf und sind außerdem nicht in der Lage, bisher unbekannte Emissionsquellen zu identifizieren. In dem hier vorgestellten Projekt soll ein mesoskaliges Netzwerk für die Überwachung von Luftschadstoffen wie CO2, CH4, CO, NO2 und O3 aufgebaut werden, das auf dem neuartigen Konzept der differentiellen Säulenmessung beruht. Bei diesem Ansatz wird die Differenz zwischen den Luftsäulen luv- und leewärts einer Stadt gebildet. Diese Differenz ist proportional zu den emittierten Schadstoffen und somit eine Maßzahl für die Emissionen, welche in der Stadt generiert werden.Mithilfe dieser Methode wird es in Zukunft möglich sein, städtische Emissionen über lange Zeiträume hinweg zu überwachen. Damit können neue Informationen über die Generierung und Umverteilung von Luftschadstoffen gewonnen werden. Wir werden u.a. folgende zentrale Fragen beantworten: Wie verhält sich der tatsächliche Trend der CO2, CH4 und NO2 Emissionen in München über mehrere Jahre? Wo sind die Emissions-Hotspots? Wie akkurat sind die bisherigen 'bottom-up' Abschätzungen? Wie effektiv sind die Maßnahmen zur Emissionsreduzierung tatsächlich? Sind vor allem für Methan weitere Maßnahmen zur Reduzierung der Emissionen notwendig? Zu diesem Zweck werden wir ein vollautomatisiertes Messnetzwerk aufbauen und passende Methoden zur Modellierung entwickeln, welche u.a. auf STILT (Stochastic Time-Inverted Lagrangian Transport) und CFD (Computational Fluid Dynamics) basieren. Mithilfe der Modellierungsresultate werden wir eine Strategie entwerfen, wie städtische Netzwerke zur Überwachung von Luftschadstoffen aufgebaut werden müssen, um repräsentative Ergebnisse zu erhalten. Außerdem können mit den so gewonnenen städtischen Emissionszahlen z.B. dem Stadtreferat, den Stadtwerken München oder der Bayerischen Staatsregierung Möglichkeiten zur Beurteilung der Effektivität der angewandten Klimaschutzmaßnahmen an die Hand gegeben werden. Das hier vorgestellte Messnetzwerk dient somit als Prototyp, um die grundlegenden Fragen zum Aufbau eines solchen Sensornetzwerks zu klären, damit objektive Aussagen zu städtischen Emissionen möglich werden. Dieses Projekt ist weltweit einmalig und wird zukunftsweisende Ergebnisse liefern.
Das Projekt "Water as medium for nutrient distribution: Monitoring water distribution between subsoil and topsoil considering roles of biopores and plants, by MRT and pressure probes (WatMed)" wird vom Umweltbundesamt gefördert und von Forschungszentrum Jülich GmbH, Institut für Bio-und Geowissenschaften (IBG), IBG-2: Pflanzenwissenschaften durchgeführt. Magnetic resonance tomography (MRT) on microcosm soil cores (200 mm Ø) used for CeMiX, comprising naturally stacked subsoil down to 700 mm plus topsoil from CeFiT, will be implemented at a laterally partially open Split 1.5 T magnet, with intended final in-plane spatial resolution of 200 Micro m. Three-dimensional biopore distributions and dynamics of their formation within the cores will be determined non-invasively and compared to complementing CT analyses of SP 2. One major aim is a non-invasive differentiation of the biopores into earthworm- and root system-originating ones and currently air-, water-, root- and earthwormfilled ones, based on NMR relaxation parameters. Attempts will additionally be made to classify different wall coatings of the biopores with regard to their water affinity. Dynamics of water distribution within the microcosm core and its biopore structures, starting from initial values taken from CeFiT (SP 3), will be documented with an in-plane resolution of 5 mm, in parallel to measurements of root growth dynamics for calculation of biomass and root surface area. Special emphasis will be put on the role of the plant root system for a re-distribution of water/D2O (and solutes) between different soil layers. Finally we will attempt MRT-controlled sample collection from the microcosm cores, to get - together with our research unit partners of SPs 4-8 - repeated access to minimally invasively acquired data on nutrient and microorganism distributions in concert with non-invasively collected water and root distribution data as a basis for dynamic modelling of water and solute circuits in SP 10. Beside the microcosm cores, flat rhizotrons as used in SP 3 will be employed to enable measurements of root and shoot hydrostatic pressure profiles with pressure probes, in addition to MRT measurements. In this way water distributions and corresponding driving forces and growth dynamics will be measured altogether in a minimally invasive manner.
Das Projekt "Development of a GIS-based model for the assessment of regional element balances as a basis for sustainable management of trace elements in agricultural soils" wird vom Umweltbundesamt gefördert und von Forschungsanstalt Agroscope Reckenholz-Tänikon ART durchgeführt. Limiting the input of toxic trace elements into soils is an important task in achieving sustainability of agricultural land use. Excessive accumulation of trace elements in soils is a major issue world-wide. In the EU agriculture is currently under particular pressure to meet stricter standards of sustainability including zero accumulation of contaminants in soils. Monitoring element accumulation in soils by means of element balancing is a very efficient method to gather the information needed to prevent or at least to limit and control soil pollution at an early stage before critical levels are reached, to prioritize decisions on abatement actions and to guide remedial actions. While methods have been developed and are continuously improved to assess element balances in European agro-ecosystems at the farm scale, there is a lack of similar models that are applicable to agricultural systems at regional scales, capable to deal with the problem of a complex data acquisition from very diverse information sources, account for dynamic feedbacks between system components and adequately address spatial redistribution of elements through processes such as erosion. The objective of this project is to develop a model for the assessment of regional element balances that has these capabilities and can deal with spatial data through combination with a GIS. For this purpose we propose to extend the existing regional mass balance model PROTERRA-S with respective dynamic features and to couple it with a GIS. Accounting for the different agricultural, socio-economic and bio-physical subsystems is a challenge that requires a modular approach with high flexibility. The generalized model will be calibrated and tested in a case study of the Swiss Canton Thurgau, for which comprehensive data bases have been already compiled and are available.
Das Projekt "Physical Mechanisms of Soil Erosion: Modelling and Validation" wird vom Umweltbundesamt gefördert und von Ecole Polytechnique Federale de Lausanne (EPF), Institut d'Amenagement des Terres et des Eaux (IATE) durchgeführt. Soil erosion is a world-wide problem with both economic and environmental effects. Consequences include loss of arable land and sediment-derived impacts on receiving water bodies. Even relatively small amounts of erosion can exceed the soil generation rate. Soil sediments are potential pollutants of receiving waters as they reduce light penetration and carry chemical pollutants such as pesticides and phosphorus. Soil erosion can be considered at local and basin scales. Rain is often the main initiator of erosion; other mechanisms include sheet erosion, rilling and gullying. These are all inherently hillslope-scale processes, the mechanisms of which involve connections between rainfall and raindrop impact, water flow, shear stress at the surface of the soil, sediment entrainment and deposition, etc. Management of soil erosion needs to be considered at the basin scale while attenuation measures are local. Physical understanding of erosion is based on local scale processes. At this scale overland flow-borne sediments and rilling (small channels that can be removed relatively easily) are the most important mechanisms. Rills have the potential to form channels under conditions of continued erosion. In addition, rills form in areas of flow concentration and thus rills are much more serious for erosion than interrill areas. The long-term goal of this fundamental research is to develop and validate process-based models of erosion-derived sediment transport at the scale of an element in a discretized catchment model, along with accompanying transport and transformations of nutrients and pollutants. This project seeks to fill one of the fundamental gaps in knowledge: mechanistic modelling of sediment transport at the local scale within a catchment. The project will further develop the mechanistic hillslope-scale Hairsine-Rose erosion model. This model includes both overland flow and sediment dynamics, and has been found to predict well erosion experimental data. However, it involves mechanistic assumptions that need to be clarified, and in addition it needs to be applied to circumstances that are more representative of reality, rather than constrained laboratory conditions. Potential mechanisms that could have significant effects on erosion modelling include the effect of infiltration/redistribution within the soil and the role of specific erosional mechanisms such as re-entrainment of previously eroded material verses transport by raindrop impact. Other factors to be investigated and modelled are multiple rainfall events and the effect of variable stone cover. Experiments and modelling will provide the basis of ascertaining the importance of such mechanisms.
Das Projekt "Variability of Solar Irradiance, Oscillations, and Seismology of the Sun" wird vom Umweltbundesamt gefördert und von Physikalisch-Meteorologisches Observatorium Davos und Weltstrahlungszentrum (PMOD,WRC) durchgeführt. The research projects of PMOD/WRC aim at understanding the terrestrial radiation budget and the influence of the Sun on the terrestrial climate. The latter is in the central focus of today's world-wide climate research and is termed 'Space Weather' if the emphasis is on short term events and it is termed 'Space Climate, if climate implications are investigated. From the point of view of the activities of PMOD/WRC, the most interesting aspect of research in solar physics is that the radiance output of the Sun itself is variable. The goal of solar physics research at PMOD/WRC is therefore, to advance our understanding of the origin of these variations in order to be able to reconstruct the solar influence on the climate in the past. The SNF grant supports: A) Interpretation of data from active space experiments: Presently, there are two active space experiments built by PMOD/WRC: VIRGO on SoHO since December 1995, which is still operational, and SOVIM on the ISS since February 2008; B) Preparing for the scientific exploitation of the upcoming space experiment LYRA/PROBA2 and PREMOS on PICRAD (with launch in 2009); C) Investigating the origin of the solar radiance variability in the UV by exploring the lower chromosphere with helioseismological methods. Since 1996 the space experiment VIRGO/SoHO is monitoring the Total (TSI) and spectral Solar Irradiance. The homogeneous VIRGO data provide a crucial element in the construction of the TSI composite and thus, VIRGO provides a key observation to investigate the influence of the Sun on the terrestrial climate. The PMOD/WRC is involved in three new space missions that continue the observations of total and spectral solar irradiance: SOVIM on the ISS since February 2008 and with launch in 2009 LYRA on PROBA2, and PREMOS on PICARD. SOVIM on the ISS continues to monitor total and spectral solar irradiance with instrumentation similar to VIRGO/SOHO. Together with the two other experiments SOLSPEC and SolACES on the same platform, which observe the spectral irradiance from the EUV to the near infrared, our knowledge of the spectral redistribution during TSI changes will be improved and provide a sound basis for understanding of solar irradiance variability. LYRA/PROBA2 observations will be used for a climate-chemistry model that was developed at PMOD/WRC as part of an ETH-funded Poly-project. When LYRA data become available we will use a special middle atmosphere version of this CCM model, SOCOL-I, for now-casting the state of the upper atmosphere as reaction to the UV irradiance as observed by LYRA/PROBA2. This now casting is primarily aimed at testing our understanding of the chemical and dynamical processes induced by the variable solar UV irradiance, but if successful, our now casting product is a welcome additional input for space weather applications. Until the launch of PROBA2, this subproject is aimed at preparing the computer model for its operational use.
Origin | Count |
---|---|
Bund | 6 |
Type | Count |
---|---|
Förderprogramm | 6 |
License | Count |
---|---|
open | 6 |
Language | Count |
---|---|
Deutsch | 6 |
Englisch | 6 |
Resource type | Count |
---|---|
Keine | 6 |
Topic | Count |
---|---|
Boden | 6 |
Lebewesen & Lebensräume | 6 |
Luft | 6 |
Mensch & Umwelt | 6 |
Wasser | 6 |
Weitere | 6 |