Berlin hat sich das Ziel gesetzt bis spätestens 2045 klimaneutral zu werden und bis 2030 die CO 2 Emissionen um 70 % zu reduzieren. Zentrales Instrument zur Erreichung der Berliner Klimaziele ist das Berliner Energie- und Klimaschutzprogramm (BEK 2030). Am 20.12.2022 hat der Berliner Senat die Fortschreibung des Berliner Energie- und Klimaschutzprogramms für die Umsetzungsphase 2022-2026 beschlossen und zur Beschlussfassung an das Abgeordnetenhaus überwiesen. Pressemitteilung zum Senatsbeschluss vom 20.12.2022 BEK 2030 Umsetzungsphase 2022-2026 ( Austauschseiten 66, 162 und 163 ) Die Fortschreibung des Klimaschutzteils des BEK 2030 erfolgte seit Herbst 2021 im Rahmen eines partizipativen Prozesses unter Beteiligung unterschiedlichster Stakeholder und der Stadtgesellschaft sowie unter Einbindung eines koordinierenden Fachkonsortiums, das im Juni 2022 seine Ergebnisse vorgestellt hatte. Weitere Informationen zum Beteiligungsprozess inklusive des Abschlussberichts finden sich auf der Seite Erarbeitungs- und Beteiligungsprozess . Auf Grundlage des Endberichts des Fachkonsortiums hat die für das BEK fachzuständige Senatsverwaltung für Umwelt, Mobilität, Verbraucher- und Klimaschutz eine Vorlage erarbeitet, in der auch die Empfehlungen des Berliner Klimabürger*innenrates berücksichtigt wurden. Im Berliner Klimabürger:innenrat hatten parallel im Zeitraum von April bis Juni 2022 einhundert zufällig ausgeloste Berlinerinnen und Berliner in acht wissenschaftlich begleiteten Sitzungen stellvertretend für die Stadtgesellschaft Herausforderungen beim Klimaschutz diskutiert und 47 konkrete Handlungsempfehlungen an den Senat erarbeitet. Auch die Fortschreibung des Berliner Energie- und Klimaschutzprogramms vereint die Themen Klimaschutz und Klimaanpassung, wobei der Klimaanpassungsteil parallel in einem verwaltungsinternen Prozess von der Senatsverwaltung für Mobilität, Verkehr, Klimaschutz und Umwelt unter Einbeziehung zahlreicher Senatsverwaltungen sowie nachgelagerten Behörden entwickelt wurde. Mit der Fortschreibung des BEK 2030 für den Umsetzungszeitraum 2022 bis 2026 wurden erstmals Sektorziele zur Emissionsminderung für die Handlungsfelder Energie, Gebäude, Verkehr und Wirtschaft festgelegt. Als weitere Neuerung wurden zur besseren Bewertung und zeitnahen Nachsteuerung für die Maßnahmen weitestgehend konkrete, quantitative Ziele und Indikatoren bzw. Umsetzungszeitpunkte definiert. Im Bereich Klimaschutz wurden 71 Maßnahmen im Bereich Klimaschutz und identifiziert, die der Senat in den nächsten Jahren umsetzen soll, um die CO 2 -Emissionen zu verringern. Im Klimaschutzbereich kommt im Handlungsfeld Energie der Umstellung auf fossilfreie Energieträger in der Strom- und Wärmeversorgung eine zentrale Rolle zu. Es gilt, alle verfügbaren Potentiale an erneuerbaren Energien in den Bereichen Solar, Wind, Abwärme, Geothermie und Bioenergie bestmöglich zu erschließen und entsprechende Infrastrukturen für Speicherlösungen aufzubauen. Wichtige Maßnahmen sind die Weiterentwicklung und Umsetzung des Masterplans Solarcity und die kommunale Wärmeplanung. Im Handlungsfeld Gebäude sind die Steigerung der energetischen Sanierungsrate im Bestand, der klimaneutrale Neubau sowie der Ausstieg aus fossilen Brennstoffen für die Versorgung der Gebäude als zentrale Schlüsselfaktoren benannt. Wichtige Maßnahmen sind hier die Entwicklung einer räumlichen Wärmeplanung sowie der Ausbau von Beratungsangeboten und Landesförderprogrammen für Gebäudeeigentümer*innen. Das Land Berlin wird zudem die sozialverträgliche Umsetzung von Sanierungspflichten im Gebäudebestand auf der Bundesebene befürworten. Im Handlungsfeld Verkehr gilt es, Maßnahmen für eine Mobilitätswende zu implementieren und umzusetzen. Dies ist im Personenverkehr der Ausbau von Rad- und Fußverkehrsinfrastrukturen oder die qualitative Verbesserung und quantitative Ausweitung des Angebotes öffentlicher Verkehrsmittel. Die Umstellung der kommunalen Fahrzeugflotte auf klimaschonende Antriebe soll dabei beispielgebend sein. Als neue Maßnahmen werden u.a. die Einrichtung einer Null-Emissionszone innerhalb des S-Bahn-Rings und eine Neuaufteilung des öffentlichen Straßenraums, die dem Umweltverbund, aber auch Stadtgrün und Aufenthaltsmöglichkeiten, Vorrang vor dem motorisierten Individualverkehr einräumt, angegangen. Die Klimaanpassung wurde im Zuge der Fortschreibung des BEK 2030 inhaltlich gestärkt und umfasst nun 53 Maßnahmen. Hier wurden die bisherigen acht Handlungsfelder Gesundheit, Stadtentwicklung und Stadtgrün, Wasser, Boden, Forstwirtschaft, Mobilität, Industrie und Gewerbe und Bevölkerungsschutz um die zwei neuen Handlungsfelder Biologische Vielfalt sowie Tourismus, Sport und Kultur erweitert. Im Handlungsfeld (HF) Gesundheit liegt der Fokus auf der Entwicklung und Etablierung eines Hitzeaktionsplanes (HAP) für das Land Berlin, verbunden mit Maßnahmen zur Sensibilisierung der Bevölkerung und einer Stärkung der Eigenvorsorge sowie die Schaffung zielgruppenspezifischer Informationen zu Hitze und UV-Strahlung. Im HF Stadtentwicklung sollen neben der Klimaanpassung in der Planung und bei der Errichtung neuer Stadtquartiere auch die Klimaanpassung im Gebäudebestand entsprechend berücksichtigt werden. Eine klimatische Qualifizierung der Stadtoberfläche soll zudem im HF Boden durch massive Entsieglung vorangetrieben werden. Als strategisches Ziel wird dabei eine Netto-Null-Versiegelung bis 2030 angestrebt. Dem gleichermaßen massiv vom Klimawandel betroffenen Stadtgrün kommt ebenfalls eine Schlüsselrolle zu, da es essentielle Ökosystemleistungen (Verschattung und Verdunstungskühlung, Luft- und Wasserfilterung, Bodenneubildung und Erhöhung der Biodiversität) erbringt. Deshalb muss das Stadtgrün klimaresilient gestaltet, entsprechend gepflegt und geschützt werden. Dafür sollen neben einer nachhaltigen Grünanlagenentwicklung u.a. das Berliner Mischwald-Programm (HF Forstwirtschaft) und die Stadtbaumkampagne konsequent fortgeführt werden. In Ergänzung dazu wird im HF Wasser eine Neuausrichtung der Regenwasserbewirtschaftung im öffentliche Raum angestrebt. Neben den spezifischen Klimaschutz- und Klimaanpassungsmaßnahmen gibt es ein neues Handlungsfeld, in dem übergreifende Themen und Herausforderungen wie Fachkräftemangel, bezirklicher Klimaschutz, Klimabildung oder bürgerschaftliches Engagement adressiert werden. Bild: SenMVKU Klimabürger:innenrat Hintergrundinformationen zum Verfahren des „Berliner Klimabürger:innenrats“. Weitere Informationen Bild: Thomas Imo (photothek) Erarbeitungs- und Beteiligungsprozess Hintergrundinformationen zum Erarbeitungsprozess des Berliner Energie- und Klimaschutzprogramms (BEK 2030) (Umsetzungszeitraum 2022-2026) Weitere Informationen Bild: SenUMVK Berichte Berichte zu Monitoring und Umsetzung des BEK 2030 sowie zur Sektorzielerreichung Weitere Informationen
Bislang werden Textilbewehrungen vor der Bauteilherstellung getränkt und ausgehärtet. Diese relativ steifen Halbzeuge eignen sich nicht zur Herstellung komplexer Bauteile auf Basis der neuen kontinuierlichen Fertigungsprozesse wie 3D-Betondruck und Betonextrusion, da ein Großteils der Formflexibilität durch die etablierte Offline-Konsolidierung verloren geht. TP B02 (Gries) untersucht daher die zeitliche Verschiebung des Umform- und Konsolidierungsschrittes mittels Prepregsystemen in den Betonageprozess. Neben bekannten Aushärtemechanismen wie z. B. Wärme oder UV-Strahlung werden neue Ansätze wie bspw. die Aktivierung über die Alkalität des Betons, über Mikrowellen oder mittels Induktion für eine Inline-Fertigung von Carbonbeton erforscht.
<p>Der Datensatz "UV-Index" gibt Auskunft über die Strahlenbelastung ultravioletter Strahlung (UV) im Stadtgebiet Münster.</p> <p>Der UV-Index ist ein Standardmaß für die Stärke der Sonnenbrand erzeugenden ultravioletten Strahlung an einem bestimmten Ort und zu einer bestimmten Zeit.</p> <p>Hauptmerkmale des Datensatzes:</p> <ul> <li>Datentyp: Numerische Werte, die den UV-Index darstellen. Ein Wert von 0 bedeutet "keine Belastung", Werte größer als 11 bedeuten "extreme Belastung".</li> <li>Der Datensatz wird täglich aktualisiert, um die jeweils aktuellen UV-Strahlungswerte wiederzugeben.</li> <li>Erhältlich in den Formaten CSV und JSON, damit Analysen und Integration in Anwendungen möglich sind.</li> </ul> <p>Datenquelle: Deutscher Wetterdienst (DWD)</p>
Es wird die Wirkung langwelliger ultravioletter Strahlung (300-400 mm) an den Objekten E. coli und Saccaromyces cerevisiae untersucht. Parameter sind hierbei das Ueberlebensverhalten sowie das Auftreten von Mutationen. Besonderen Raum nimmt das Studium von Fotosensibilatoren sowie der Einfluss von Sauerstoff ein.
Manuelles oder automatisiertes Schweißen ist in der metallverarbeitenden Industrie das maßgebende Fertigungsverfahren. Aufgrund ihrer geringeren Ermüdungsfestigkeit und Lebensdauer im Vergleich zum Grundwerkstoff stellen Schweißverbindungen immer strukturelle Schwachpunkte dar. Die benötigten Blechdicken in geschweißten und zyklisch beanspruchten Bauteilen und Konstruktionen und der damit verbundene Ressourcenbedarf werden dabei stets über den geringen Ermüdungswiderstand der Schweißverbindung vorgegeben. Ein wesentlicher Anteil daran ist maßgeblich auf die Kerbwirkung bzw. Spannungskonzentration am Schweißnahtübergang zurückzuführen. Aus zahlreichen Untersuchungen ist bekannt, dass die lokale Nahtgeometrie in hohem Maße für die Ermüdungsfestigkeit der Verbindung relevant ist und Risse von einzelnen Schwachstellen mit hoher Kerbwirkung initiieren. Die Identifizierung von geometrischen Schwachstellen mit hoher Kerbwirkung ermöglicht zudem die gezielte Nacharbeit. Ziel des Projekts ist der Aufbau eines Konzeptes für ein automatisierbaren und anwenderunabhängiges Verfahren zur in-line (oder nachfolgenden) Inspektion und individuellen Lebensdauerbewertung von Schweißverbindungen auf Basis von 3D-Scans zu entwickeln. Besonderes Augenmerk wird auf die Erarbeitung einer technischen Lösung zur Erstellung von 3D-Scans und deren Auswertung an Schweißverbindungen aus Baustahl (S355) durch Metallaktivgasschweißen (MAG) gelegt. Das Unternehmen Quelltech GmbH entwickelt in Zusammenarbeit mit den Liebherr Werken Biberach ein Verfahren zur in-line Digitalisierung von Schweißnahtoberflächen direkt während des MAG-Schweißprozesses. Durch konstruktive und softwaretechnische Maßnahmen soll der Einfluss von Störgrößen (u.a. Rauch, UV-Licht, Spritzer) auf die generierten 3D-Daten minimiert werden. Dies ermöglicht eine effiziente und anwenderunabhängige Kontrolle der Schweißnahtoberflächen.
Es wird eine Methode entwickelt, welche den empfindlichen Nachweis durch UV und Roengenstrahlen induzierter Veraenderungen in der DNS ermoeglicht. Dazu werden in Kaninchen nach Injektionen bestrahlte DNS Antikoerper gebildet. Strahlenschaeden koennen mit ihrer Hilfe durch einen Radioimmunoverdraengungsassay in sehr geringen Mengen auch dort nachgewiesen werden, wo eine Markierung der DNS nicht moeglich ist.
Atomarer Sauerstoff (O) ist ein wichtiger Bestandteil der Erdatmosphäre. Er erstreckt sich von der Mesosphäre bis zur unteren Thermosphäre (Engl.: Mesosphere and Lower Thermosphere: MLT), d. h. von etwa 80 km bis über 500 km Höhe. O wird durch Photolyse von molekularem Sauerstoff durch UV-Strahlung erzeugt. Er ist die am häufigsten vorkommende Spezies in der MLT und eine wichtige Komponente in Bezug auf dessen Photochemie. Außerdem ist O wichtig für den Energiehaushalt der MLT, da CO2-Moleküle durch Stöße mit O angeregt werden und die angeregten CO2-Moleküle im Infraroten strahlen und die MLT kühlen. Dies bedeutet, dass sich der globale Klimawandel auch auf die MLT auswirkt, denn die Erhöhung der CO2-Konzentration in der MLT führt zu einer effizienteren Kühlung und damit zu deren Schrumpfen. Die O Konzentration wird außerdem durch dynamische Bewegungen, vertikalen Transport, Gezeiten und Winde beeinflusst. Daher ist eine genaue Kenntnis der globalen Verteilung von O und seines Konzentrationsprofils sowie der täglichen und jährlichen Schwankungen unerlässlich, um die Photochemie, den Energiehaushalt und die Dynamik der MLT zu verstehen. Das Ziel dieses Projekts ist es, Säulendichten und Konzentrationsprofile von O in der MLT durch Analyse der Feinstrukturübergänge bei 4,74 THz und 2,06 THz zu bestimmen. Die zu analysierenden Daten wurden mit dem Heterodynspektrometer GREAT/upGREAT (German REceiver for Astronomy at Terahertz frequencies) an Bord von SOFIA, dem Stratospheric Observatory for Infrared Astronomy, gemessen. Dies ist eine direkte Beobachtungsmethode, die genauere Ergebnisse liefern kann als existierende indirekte satellitengestützte Methoden, die photochemische Modelle benötigen, um O Konzentrationsprofile abzuleiten. Mit GREAT/upGREAT wurden seit Mai 2014 ca. 500.000 Spektren gemessen, die vier verschiedene Weltregionen abdecken, nämlich Nordamerika, Neuseeland, Europa und Tahiti/Pazifik. Zeitliche Variationen sowie der Einfluss von Sonnenzyklen, Winden und Schwerewellen werden ebenfalls im Rahmen des Projekts untersucht. Die Ergebnisse werden mit Satellitendaten, die für Höhen von 80 bis 100 km verfügbar sind, und mit Vorhersagen eines semi-empirischen Modells verglichen. Es sei darauf hingewiesen, dass diese Daten die ersten spektral aufgelösten direkte Messungen von O in der MLT sind. Dies ist eine vielversprechende Alternative zur Bestimmung der Konzentration von O im Vergleich mit indirekten satellitengestützten Methoden, die auf photochemischen Modellen beruhen.
Dies ist ein Antrag auf Reisekosten für eine Reise von Deutschland nach Argentinien zum Besuch der Vulkane Copahue and Peteroa, dort planen wir zusammen mit Forschern aus Argentinien in-situ Messungen von vulkanischem SO2 mit einem neuartigen Instrument. In Kombination mit in-situ CO2 Messungen erwarten wir einen Datensatz von CO2/SO2 Verhältnissen mit bisher unerreichter Genauigkeit und Zeitauflösung.Obwohl Fernerkundungsmessungen von SO2 sich mittlerweile in der Vulkanologie weit verbreitet haben, stellen bodengebundene und Flugzeug-getragene in-situ-Messungen immer noch eine wichtige Quelle ergänzender Information dar. Heutzutage werden in-situ Messungen von SO2 häufig mittels elektrochemischer Sensoren vorgenommen, diese weisen allerdings eine Reihe von Nachteilen auf, insbesondere (1) relativ lange Ansprechzeiten (ca. 20 s und mehr), (2) Interferenzen durch eine Reihe anderer reaktiver Gase, die sich in Vulkanfahnen finden (und die schwer zu quantifizieren bzw. unbekannt sind), (3) Die Notwendigkeit häufiger Kalibration. Wir lösen diese Probleme mit einem neuentwickelten, optischen in-situ SO2-Sensor Prototypen, der nach dem Prinzip der nicht-dispersiven UV-Absorption arbeitet (PITSA, Portable in-situ Sulfurdioxide Analyser). Die preisgünstige Anwendung des Prinzips für SO2 - Messungen wurde durch die Entwicklung von UV-LEDs ermöglicht. Die Probenluft wird durch eine Glasröhre gesaugt und dort der kollimierten Strahlung einer UV-LED (ca. 290nm) ausgesetzt, in diesem Wellenlängenbereich absorbiert (von den relevanten Vulkangasen) praktisch nur SO2. Daher ist die Abschwächung der Strahlungsintensität nach Durchgang durch die Messzelle ein Mass für den SO2-Gehalt der Messluft. Das PITSA Instrument wird mit einem kommerziellen CO2 Sensor kombiniert, damit werden SO2 und CO2 Messungen mit 0.1 ppm bzw. 1 ppm Genauigkeit möglich. Dadurch eröffnen sich neue Möglichkeiten in der Vulkanologie.
| Origin | Count |
|---|---|
| Bund | 1147 |
| Kommune | 8 |
| Land | 53 |
| Wissenschaft | 1 |
| Zivilgesellschaft | 37 |
| Type | Count |
|---|---|
| Chemische Verbindung | 2 |
| Daten und Messstellen | 36 |
| Ereignis | 2 |
| Förderprogramm | 908 |
| Gesetzestext | 3 |
| Text | 89 |
| Umweltprüfung | 1 |
| Videomaterial | 1 |
| unbekannt | 192 |
| License | Count |
|---|---|
| geschlossen | 262 |
| offen | 966 |
| unbekannt | 3 |
| Language | Count |
|---|---|
| Deutsch | 1151 |
| Englisch | 304 |
| Leichte Sprache | 2 |
| Resource type | Count |
|---|---|
| Bild | 9 |
| Datei | 9 |
| Dokument | 68 |
| Keine | 824 |
| Multimedia | 8 |
| Unbekannt | 5 |
| Webdienst | 1 |
| Webseite | 339 |
| Topic | Count |
|---|---|
| Boden | 688 |
| Lebewesen und Lebensräume | 969 |
| Luft | 735 |
| Mensch und Umwelt | 1231 |
| Wasser | 747 |
| Weitere | 1136 |