Das Projekt "Einfluß von Kolloiden und Partikeln auf den medienübergreifenden Transport von Schadstoffen im Untergrund" wird vom Umweltbundesamt gefördert und von Technische Universität Dresden, Fachrichtung Hydrowissenschaften, Institut für Grundwasserwirtschaft durchgeführt. Partikel in den Größen von wenigen Mikrometern bis in den makromolekularen Bereich kommen in allen natürlichen (Grund-)Wässern vor. Durch ihre Beweglichkeit können sie die Mobilität solcher partikelgebundener Substanzen entscheidend erhöhen, die in wässrigen Lösungen sonst schwer- oder unlöslich sind (v.a. Schwermetalle und PAK). Da Partikel und Kolloide sensibel auf Milieuveränderungen reagieren, untersucht diese Arbeit die Auswirkungen, die die Entnahme von Wasserproben aus dem Aquifer und der anschließende Umgang mit den Proben auf den Partikelinhalt hat. Ziel ist die Entwicklung eines praxistaun aber noch relativ schonenden Verfahrens, das anschließend an Grundwässern aus verschiedensten Lithologien erprobt werden soll. Vor allem im Hinblick auf Schadstoffmobilitäten ist es nötig, zukünftige Partikelbewegungen unter geänderten Rahmenbedingungen einschätzen glichezu können. Dafür sollen Faktoren, die Partikelvorkommen und -bewegung im Untergrund steuern, identifiziert werden. Dies soll zukünftig eine Simulation der Partikelbewegung im Untergrund ermöglichen.
Das Projekt "Sonderforschungsbereich (SFB) 1253: Catchments as Reactors: Schadstoffumsatz auf der Landschaftsskala (CAMPOS)" wird vom Umweltbundesamt gefördert und von Universität Tübingen, Zentrum für Angewandte Geowissenschaften, Arbeitsgruppe Hydrogeochemie durchgeführt. Das Verhalten anthropogener Schadstoffe im Landschaftsmaßstab stellt eine der größten Herausforderungen heutiger Umweltwissenschaften dar. Forschungsergebnisse der letzten zehn Jahre haben wiederholt gezeigt, dass Umsatzraten von Schadstoffen, die im Labor ermittelt wurden, im Widerspruch zu Feldbeobachtungen stehen. Dies weist darauf hin, dass wir die relevanten Prozesse, die den Schadstoffumsatz in der Natur bestimmen, nur unvollständig verstehen. Entsprechend sind wir nicht in der Lage, zukünftige Entwicklungen der Wasser- und Bodenqualität in Folge des Klima- und Landnutzungswandels zuverlässig vorherzusagen. Der SFB CAMPOS beruht auf der Hypothese, dass auf der Feldskala Prozesse maßgeblich sind, die in Laborexperimenten nur schwer zu erfassen sind. Viele Schadstoffe, die unter Laborbedingungen vergleichsweise schnell abgebaut werden, zeigen eine unerwartete Langlebigkeit im Feld; sie werden in Böden und Grundwasserleitern über lange Zeiträume gespeichert und können noch Jahre, nachdem der anthropogene Eintrag aufgehört hat, nachgewiesen werden. Während wichtige, aber langsame Prozesse in Laborstudien möglicherweise übersehen werden, erschwert die ausgeprägte hydrologische und biogeochemische Dynamik die Interpretation konventioneller Beobachtungskampagnen im Feld. CAMPOS zielt darauf ab, reaktive Landschaftselemente zu identifizieren und ihre Prozessdynamik mit ausführlichen Feldstudien zu biogeochemischen Umsätzen von Schadstoffen in einer beispiellosen Auflösung zu quantifizieren. Derartige Studien sind erst durch den enormen Fortschritt in der Analytik und Messtechnik der letzten Jahre (z.B. substanzspezifische Isotopen- und Enantiomeranalytik, 'non-target screening', Bioanalytik, insitu Sensoren, molekularbiologische Techniken inklusive omics) ermöglicht worden, die bislang noch nicht in gezielten Felduntersuchungen kombiniert wurden. Jedes im SFB vorgesehene Projekt vereinigt Expertise aus unterschiedlichen Disziplinen, die notwendig sind, um den Verbleib von Schadstoffen in der Natur zu verstehen. Die untersuchten Landschaftselemente umfassen Fließgewässer, den Übergang zwischen Gerinnen und dem Untergrund, Transekten im Grundwasser sowie verschiedene Bodenkompartimente. Ein neuer stochastischer Modellieransatz ermöglicht es, den reaktiven Stofftransport im Landschaftsmaßstab prozessbasiert zu modellieren und die damit verbundene Unsicherheit zu quantifizieren. Unser neuartiger multidisziplinärer Ansatz quantifiziert das langfristige Verhalten anthropogener Schadstoffe in der Umwelt, indem Einzugsgebiete als biogeochemische Reaktoren betrachtet werde. CAMPOS trägt somit zum Fortschritt der Umweltwissenschaften bei und schafft die Grundlage für realistischere Projektionen der zukünftigen Boden- und Wasserqualität unter den Bedingungen des Klima- und Landnutzungswandels.
Das Projekt "Teilprojekt P06: Steuergrößen für das Verhalten von Agrochemikalien in Böden" wird vom Umweltbundesamt gefördert und von Universität Tübingen, Zentrum für Angewandte Geowissenschaften, Arbeitsgruppe Hydrogeochemie durchgeführt. Landwirtschaftliche Böden erfahren einen hohen Eintrag an Agrochemikalien, die wiederum abgebaut, gespeichert oder auch in andere Umweltkompartimente wie den Untergrund verlagert werden können. Unbenommen der generellen Bedeutung der Böden für die Oberflächen- und Grundwasserqualität fehlt nach wie vor ein mechanistisches Verständnis der gekoppelten geochemischen Prozesse, die den Schadstoffabbau in Böden steuern. Auf Basis eines Untersuchungsprogramms zum Pestizid- und Stickstoffaustrag auf repräsentativen Böden im Ammergebiet werden in dem Projekt die limitierenden Faktoren des Pestizidabbaus untersucht, um zu klären, weshalb intrinsisch abbaubare Stoffe auf der Feldskala äußerst persistent sein können.
Das Projekt "Teilprojekt P07: Stochastischer Modellansatz für den reaktiven Stofftransport auf der Landschaftsskala" wird vom Umweltbundesamt gefördert und von Eberhard Karls Universität Tübingen, Zentrum für Angewandte Geowissenschaften (ZAG), Arbeitsgruppe Hydrogeology durchgeführt. In dem Projekt wird ein stochastischer Modellieransatz für den reaktiven Stofftransport im Landschaftsmaßstab entwickelt. Prozesse an der Landoberfläche und in Böden werden durch stochastische Boden-Pflanzen-Modelle beschrieben, die an ein stochastisches 3-D Strömungsmodell des Untergrunds unterhalb der Wurzelzone sowie an fließ- bzw. kontaktzeitbasierte reaktive Stofftransportmodelle für Nitrat und Pestizide gekoppelt sind. Als Ergebnis statistisch verteilter Parameter und Randbedingungen, ergeben sich statistische Verteilungen der Zielgrößen, wie z.B. Wasserstände und -flüsse, Konzentrationen reaktiver Spezies. Diese Verteilungen werden anschließend anhand gemessener Daten mittels Ensemble-Kalman-Filtermethoden konditioniert.
Das Projekt "Skalenübergreifende Charakterisierung von polaren Permafrost-Landschaften mittels Flugzeug- und Satellitengestützen Daten und geophysikalischen in-situ Messungen" wird vom Umweltbundesamt gefördert und von Universität Würzburg, Institut für Geographie und Geologie, Lehrstuhl I - Physische Geographie durchgeführt. Im Lauf der letzten Dekaden wurde für große Teile der Arktis eine signifikante Erwärmung der Erdoberfläche und des oberflächennahen Untergrunds beobachtet. Deren Folgen zeigen sich bereits heute - beispielsweise in einer Ausbreitung der Buschvegetation und einer Vertiefung der saisonalen Auftauschicht. In Anbetracht der Bedeutung von Änderungen in Permafrostregionen für Umwelt, Infrastruktur und Klimasystem besteht ein dringender Bedarf, Parameter dieses Raumes großflächig zu bestimmen und kontinuierlich zu überwachen. Durch die Weite und spärlichen Besiedelung der Arktis sind diese Umweltdaten jedoch nur unzureichend verfügbar und ihre Erhebung ist kostenintensiv. In diesem Kontext können fernerkundliche Daten einen wichtigen Beitrag leisten; Flugzeug- und Satellitengestützte Systeme ermöglichen eine effiziente und flächendeckende Aufnahme von Oberflächeneigenschaften. Ziel des Projekts ist die Identifizierung und Quantifizierung von Zusammenhängen zwischen Eigenschaften der Erdoberfläche, welche durch Fernerkundung abgeleitet werden können, und Eigenschaften des Untergrunds, die den Zustand von Permafrostgebieten charakterisieren. Basierend auf diesen Ergebnissen ist ein weiteres Ziel die Erstellung von konzeptionellen Modellen, welche die Verschränkung und Verbindung von Umwelt-Parameter zeigen. Die Arbeiten werden in einem skalenübergreifenden Multi-Sensor-Ansatz durchgeführt. Der Fokus wird dabei auf die Identifizierung der Kopplungen zwischen Oberfläche und Untergrund, sowie auf den Einfluss des Betrachtungsmaßstabs gelegt. Als fernerkundliche Daten stehen zur Verfügung: (1) grob aufgelöste optische und thermische Satellitendaten, (2) mittel-aufgelöste Radar- und Multi-Spektraldaten und (3) hoch-aufgelöste Thermal-, Hyperspektral- und Laserscanner-Daten von regionalen Befliegungen. Die Charakterisierung des Untergrunds erfolgt mittels (1) geomorphologischer Kartierung, (2) Zeitreihen-Analyse der Temperatur und Bodenfeuchte aus abgeteuften Sensoren, (3) Ground Penetrating Radar (GPR) und (4) elektrischen Widerstandsmessungen. Fernerkundliche Daten der Erdoberfläche und geophysikalische Daten zum Untergrund werden mit multivariaten statistischen Methoden analysiert - mit dem Ziel Zusammenhängen zwischen Oberflächen- und Untergrund-Parametern des periglazialen Systems zu identifizieren und zu quantifizieren. Als Untersuchungsgebiete wurden die Mackenzie Delta Region und das Peel Plateau identifiziert. Beide Regionen liegen in Nord Kanada und zeigen innerhalb geringer Distanzen verschiedenartige, durch Permafrost geprägte Ökosysteme. Zudem stehen durch Vorstudien Daten zur Verfügung; zum einen Referenzdaten von Feld-Kampagnen und zum anderen Satellitenbilder verschiedener Sensoren. Darüber hinaus wird vom Alfred Wegener Institut eine Befliegung dieser Gebiete geplant und finanziert. Das Flugzeug wird mit einer vielfältigen Instrumentenauswahl bestückt; u. a. ein flugzeuggetragenes GPR, ein Laserscanner und eine hyperspektral Kamera.
Das Projekt "Teilprojekt P03: Einfluss von Untergrundstrukturen auf die hydrologische Funktionsweise von Flussauen" wird vom Umweltbundesamt gefördert und von Eberhard Karls Universität Tübingen, Zentrum für Angewandte Geowissenschaften (ZAG), Arbeitsgruppe Hydrogeology durchgeführt. Die Umsetzung von Schadstoffen in Auensedimenten hängt insbesondere von den vorherrschenden geochemischen Gradienten ab, die wiederum von hydrogeologischen Faktoren wie variabler Grundwasserfließrichtung, Konnektivität der Grundwasserfließpfade zu Drainagegräben und der Verweilzeit des Wassers unter gegebenen geochemischen Bedingungen bestimmt werden. In dem Projekt werden Methoden entwickelt, mit deren Hilfe Fließpfade und Aufenthaltszeiten bestimmt sowie Sedimentstrukturen und Hydrofazies charakterisiert werden können. Die Daten sind Voraussetzung zur Bewertung der hydrochemischen Daten und finden Verwendung in den Grundwasser- und Einzugsgebietsmodellen.
Das Projekt "Teilprojekt P08: Konzeptionelle Unsicherheit, Modellzulässigkeit und Optimierung von Datenerfassungsstrategien" wird vom Umweltbundesamt gefördert und von Eberhard Karls Universität Tübingen, Zentrum für Angewandte Geowissenschaften (ZAG), Arbeitsgruppe Hydrogeology durchgeführt. Die landschaftsweite Modellierung des reaktiven Stofftransports beinhaltet eine nichteindeutige Auswahl von Teilmodellen (konzeptionelle Unsicherheit). Die vorliegende Komplexität der Landschaft macht den Einsatz komplexer Modelle erforderlich, wobei eine zu große Komplexität problematisch ist: solche Modelle lassen sich an eine Vielzahl von Datensätzen anpassen, besitzen aber nur begrenzte Vorhersagekraft. Das Projekt wird die konzeptionelle Unsicherheit des genutzten Modells untersuchen und quantifizieren, und prüfen, ob das Modell zulässig im Sinne der verfügbaren Daten ist. Das Modell wird dann genutzt, um Monitoringstrategien und die damit verbundene Modellierungs- und Feldaktivitäten des gesamten Konsortiums zu optimieren.
Das Projekt "Sonderforschungsbereich (SFB) 990: Ökologische und sozioökonomische Funktionen tropischer Tieflandregenwald-Transformationssysteme (Sumatra, Indonesien)" wird vom Umweltbundesamt gefördert und von Universität Göttingen, Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Abteilung Tierökologie (Scheu) durchgeführt. In vielen tropischen Gebieten werden Regenwälder gerodet, um Holz und andere Waldprodukte zu gewinnen und Nahrungs-, Futter-, Faser- und Energiepflanzen anzubauen. Häufig wird angenommen, dass beim Roden natürlicher Wälder alle Funktionen und Leistungen des Waldes verloren gehen. Allerdings ist eine vollständige Konservierung in vielen Situationen nicht realistisch und aus ökologischer Sicht möglicherweise auch nicht erforderlich. Überraschenderweise wurden die Determinanten der Abholzung tropischer Regenwälder und die Rolle der daraus entstehenden agrarischen Nutzungssysteme für den Erhalt von Biodiversität und anderen ökologischen und sozioökonomischen Funktionen im Detail bisher nur wenig wissenschaftlich erforscht. Der Sonderforschungsbereich 990 (SFB 990 / EFForTS) verfolgt das Ziel, wissenschaftlich fundierte Erkenntnisse darüber bereitzustellen, wie auf der Landschaftsskala die ökologischen Funktionen tropischer Regenwälder und landwirtschaftlicher Nutzungssysteme erhalten und verbessert werden können, bei gleichzeitiger Steigerung der menschlichen Wohlfahrt. Ebenso verfolgt der SFB die Frage, wie landwirtschaftliche Nutzung und Naturschutz besser integriert werden können. Die Forschung wird in einer der größten Tieflandregenwaldregionen Südostasiens durchgeführt, der Provinz Jambi in Sumatra, Indonesien. Gummi- und Ölpalmenplantagen gehören zu den wichtigsten landwirtschaftlichen Nutzungssystemen in Jambi. Innerhalb der Provinz wurden zwei Landschaften und 36 Kernflächen für umfassende Analysen ausgewählt, die unterschiedliche Nutzungssysteme und Regenwaldreferenzflächen umfassen. In einer der Landschaften wurden zum Vergleich Flussufer- und nicht-Flussuferbereiche identifiziert. Zudem werden in zwei Experimenten in Ölpalmplantagen der Einfluss von Anreicherungskulturen sowie von unterschiedlichen Dünger- und Pestizidintensitäten erforscht. Bei den Analysen wird eine Vielzahl relevanter Aspekte untersucht und verglichen, z.B. ober- und unterirdische Biodiversität, Bodenfruchtbarkeit, Wasser- und Nährstoffflüsse, Treibhausgasemissionen, sowie wirtschaftliche, soziale, kulturelle und politische Dimensionen der Landnutzungsänderung. Besonderes Augenmerk liegt auf der Analyse von Synergien und Konflikten zwischen den unterschiedlichen ökologischen und sozioökonomischen Funktionen, deren detaillierte Kenntnis eine wichtige Voraussetzung für die Entwicklung und Umsetzung nachhaltiger Agrarsysteme ist. Der SFB wird in enger Kooperation zwischen der Universität Göttingen und verschiedenen Partnerinstitutionen in Indonesien durchgeführt. Dieses Programm zur Erforschung von Transformationsprozessen in tropischen Tieflandregenwäldern ist mit Blick auf die sehr breite interdisziplinäre Ausrichtung und die Landschaftsperspektive international einzigartig.
Das Projekt "Vorhaben: Konstruktion und Erprobung der GEWS-Sonden" wird vom Umweltbundesamt gefördert und von Fraunhofer-Einrichtung für Energieinfrastrukturen und Geothermie IEG durchgeführt. Im Rahmen des Projektvorhabens soll eine Versuchsanlage eines Geologischen Eis-Wärme-Speichers (GEWS) erstellt und getestet werden, um tiefenspezifische Teile des geologischen Untergrunds und hier vornehmlich Grundwasserleiter und das darin enthaltene Wasser geotechnisch als Latentwärmespeicher zu nutzen. Wesentliche Zielsetzung ist dabei, eine Technologie für kostengünstige und in der Leistung sowie energetischen Kapazität einfach zu skalierende GEWS-Anlagen für Lockersedimente zu erproben, wobei insbesondere die Randbedingungen des urbanen untertägigen Raumes im Vordergrund stehen, da dort der größte Wärmeversorgungsbedarf zu Kühlzwecken besteht. Im Unterschied zu konventionellen und erprobten Eis-Wärme-Speichersystemen im Boden werden bei dem GEWS-Verfahren durch aktive thermische Isoliersysteme in Erdwärmesonden tiefenhorizontierte Vereisungs- und Auftauprozesse im geologischen Untergrund ermöglicht, so dass der oberflächennahe Bereich weitgehend thermisch unbeeinflusst und auf jeden Fall eisfrei bleibt.
Das Projekt "Verwendung von Kanalnetzcharakteristiken zur Ableitung von optimierten punkt-basierten Monitoringsystemen - INCIDENT" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum für Umweltforschung GmbH - UFZ, Department Monitoring- und Erkundungstechnologien durchgeführt. Der Schutz von Oberflächen- und Grundwasserkörpern gegen potentielle Verunreinigungen (z.B. Xenobiotika) hat an Bedeutung entscheidend zugenommen. Der Einfluss dieser Substanzen auf Umwelt und Mensch können nach wie vor nicht umfassend erfasst werden und liegen daher im Fokus aktueller Forschung. Ein signifikantes Gefährdungspotential geht von Leckagen in Kanalnetzen aus. Aufgrund der hohen Bandbreite an Kanalzuständen (z.B. Alter) und den einhergehenden verschiedenen Schadbildern von Kanalrohren, birgt die zeitlich und räumlich hochvariable Exfiltration von Schadstoffen ein zunehmendes Kontaminationsrisiko. Kanalnetzleckagen und die zeitlich-räumliche Verteilung der Schadstoffe in vadoser und gesättigter Zone hängen sowohl von Untergrundeigenschaften als auch der geometrischen Struktur der Kanalnetze ab. Aufgrund der primär vertikalen Fließprozesse in der ungesättigten Zone, nehmen wir an, dass kanalnetzbürtige Schadstofffahnen von multiplen, kleinskaligen Kanalnetzdefekten die Grundwasseroberfläche als eindimensionale, horizontale Linienquellen erreichen. Aufgrund von sich überlagernden Prozessen und externen Stressoren ist es nicht praktikabel, jeden individuellen Kanaldefekt zu detektieren. Wir gehen davon aus, dass zur Ableitung und Ausweisung von potentiell durch Kanalleckagen gefährdeten Gebieten die Erfassung von Linienquellen und den daraus resultierenden Schadstofffahnen durch Grundwassermonitoring zielführend ist. Oft unterliegen urbane Grundwassermonitoringsysteme finanziellen und örtlichen Einschränkungen. Daher ist es nötig, die Anzahl und räumliche Verteilung der zur hinreichenden Erfassung von kanalbürtigen Schadstoffen benötigten Grundwasserbeobachtungsstellen zu evaluieren. Wir behaupten, dass (neben Untergrundeigenschaften) v.a. die Kanalnetzgeometrie einen signifikanten Einfluss auf die Schadstoffverteilung hat. Folglich sollte es möglich sein, kanalbürtige Schadstofffahnen mit Hilfe der kombinierten Nutzung von Grundwassermonitoring, Kanalnetzwerk- und Gebietseigenschaften zu erfassen und zu lokalisieren. Mittels der Eigenschaften und der räumlichen Verteilung von Linienquellen (hier Kanalnetzwerk) wird es überdies möglich sein, bereits existierende, punkt-basierte Monitoringsysteme (hier im Grundwasser) zu optimieren. Die zentrale Zielstellung dieses Antrags ist die Quantifizierung der Vorhersagefähigkeit, mit welcher ein gegebenes Grundwassermonitoringsystem Kanalnetzabschnitte als Quellen für Untergrundverunreinigungen unter Nutzung von Monte-Carlo- Modellansätzen zu lokalisieren vermag. Konzepte der Mehrzieloptimierung ermöglichen damit die Ableitung optimierter Grundwassermonitoringkonzepte für gegebene Kanalnetzstrukturen mit einer definierten Genauigkeit bzw. tolerierbaren Unsicherheit.
Origin | Count |
---|---|
Bund | 186 |
Type | Count |
---|---|
Förderprogramm | 186 |
License | Count |
---|---|
offen | 186 |
Language | Count |
---|---|
Deutsch | 166 |
Englisch | 36 |
Resource type | Count |
---|---|
Keine | 66 |
Webseite | 120 |
Topic | Count |
---|---|
Boden | 182 |
Lebewesen & Lebensräume | 146 |
Luft | 103 |
Mensch & Umwelt | 186 |
Wasser | 113 |
Weitere | 186 |