Viele Umweltzerstörungen werden auf privaten Konsum zurückgeführt. Dessen negative Auswirkungen entstehen oft in Folge zahlreicher einzelner, an sich harmloser Verbraucherentscheidungen, wie beispielsweise Flugreisen oder Fleischkonsum. Zum Umweltproblem entwickeln sie sich dadurch, dass zu viele bzw. eine zunehmende Zahl an Menschen konsumieren. Der vorliegende Bericht diskutiert dieses Problem unter dem Titel der Mengenproblematik. Er fragt, ob es aus Gründen der intra- und intergenerationellen Gerechtigkeit nicht eher geboten wäre, dass Umweltpolitik privaten Konsum viel stärker reguliert und inwiefern diese Eingriffe mit dem liberalen Freiheitsbegriff vereinbar sind. Der Bericht argumentiert dafür, dass Konsum immer eine öffentliche Angelegenheit ist, dass es sinnvoll ist, die Mengenproblematik nicht primär und ausschließlich am Ende bei den Verbrauchenden zu „privatisieren“ sondern in gesellschaftliche Fragen einer Suffizienzpolitik einzubetten. Daher kann ethisch begründet werden, dass Konsum als Teil von Lebensformen Gegenstand von Umweltpolitik werden muss, damit die Mengenproblematik bearbeitet werden kann.
Das Projekt "D 6.1: Improving fruit set and quality standards of mango in the mountainous area of Vietnam" wird vom Umweltbundesamt gefördert und von Universität Hohenheim, Institut für Kulturpflanzenwissenschaften, Fachgebiet Ertragsphysiologie der Sonderkulturen (340f) durchgeführt. A major problem in mango production in Northern Vietnam is a premature fruit drop. However, the underlying plant processes in response to environmental and/or crop management factors are not understood. There is a general belief that this phenomenon is caused by different combinations of stressing factors which may vary between different regions and sites. In the mountainous area of northern Vietnam (Son La Province), fruit drop in mango may be caused by relatively hot, dry prevailing winds which typically occur in February/March. Consequently, it has to be determined which plant process responds sensitively to specific environmental conditions and subsequently causes, through its alteration, premature fruit drop. The identification of the physiological basis of premature fruit drop not only is of scientific interest but also of commercial significance, allowing the development of effective, fruit drop reducing crop management strategies and thus ensuring a economically sustainable cultivation of mango in this region. The research project has two main parts; environmental crop physiology and fruit quality. The environmental crop physiology part investigates whether premature fruit drop is caused by high temperature/vapour pressure deficit (VPD) conditions and related to: 1. temperature dependence of pollen tube growth and flower quality; 2. altered carbon fixation and carbon partitioning between sources (leaves) and sinks (fruit), thus possible limitations of carbon supply to developing mango fruit; 3. altered basipetal auxin export from fruit and fruit ethylene concentration. The fruit quality part will primarily carry out sensory fruit analyses and establish harvest quality criteria with the aim to improve the economic returns and thereby the economic situation of the fruit growers in the long-term.
Das Projekt "Forest management in the Earth system" wird vom Umweltbundesamt gefördert und von Max-Planck-Institut für Meteorologie durchgeführt. The majority of the worlds forests has undergone some form of management, such as clear-cut or thinning. This management has direct relevance for global climate: Studies estimate that forest management emissions add a third to those from deforestation, while enhanced productivity in managed forests increases the capacity of the terrestrial biosphere to act as a sink for carbon dioxide emissions. However, uncertainties in the assessment of these fluxes are large. Moreover, forests influence climate also by altering the energy and water balance of the land surface. In many regions of historical deforestation, such biogeophysical effects have substantially counteracted warming due to carbon dioxide emissions. However, the effect of management on biogeophysical effects is largely unknown beyond local case studies. While the effects of climate on forest productivity is well established in forestry models, the effects of forest management on climate is less understood. Closing this feedback cycle is crucial to understand the driving forces behind past climate changes to be able to predict future climate responses and thus the required effort to adapt to it or avert it. To investigate the role of forest management in the climate system I propose to integrate a forest management module into a comprehensive Earth system model. The resulting model will be able to simultaneously address both directions of the interactions between climate and the managed land surface. My proposed work includes model development and implementation for key forest management processes, determining the growth and stock of living biomass, soil carbon cycle, and biophysical land surface properties. With this unique tool I will be able to improve estimates of terrestrial carbon source and sink terms and to assess the susceptibility of past and future climate to combined carbon cycle and biophysical effects of forest management. Furthermore, representing feedbacks between forest management and climate in a global climate model could advance efforts to combat climate change. Changes in forest management are inevitable to adapt to future climate change. In this process, is it possible to identify win-win strategies for which local management changes do not only help adaptation, but at the same time mitigate global warming by presenting favorable effects on climate? The proposed work opens a range of long-term research paths, with the aim of strengthening the climate perspective in the economic considerations of forest management and helping to improve local decisionmaking with respect to adaptation and mitigation.
Das Projekt "Chinesisch-Deutsches Zentrum für Impact Assessment (CGCIA)" wird vom Umweltbundesamt gefördert und von Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF) e.V., Institut für Landnutzungssysteme und Landschaftsökologie durchgeführt. Das Chinesisch-Deutsche Zentrum für Folgenabschätzung erweitert das Netzwerk für Wissenschaftler, die sich mit Impact Assessment im Bereich Landnutzung, Klimawandel und Ressourcenschutz beschäftigen.
Das Projekt "Teilprojekt E" wird vom Umweltbundesamt gefördert und von Universität Hohenheim, Institut für Bodenkunde und Standortslehre, Fachgebiet Biogeophysik durchgeführt. Ziel des Projekts ist es, das im Agrarökosystem-Simulationsmodellpaket Expert-N implementierte Agroforstmodell anzuwenden, um den möglichen Mehrwert von Agroforstsystemen in Deutschland im Vergleich zum Einfruchtanbau zu analysieren, insbesondere im Hinblick auf Ökosystemleistungen wie Ertrag, Wasser- und Luftreinhaltung sowie die Kohlenstoffsequestrierung im Boden. Das Modell wird mit Hilfe von Daten, die von den anderen Teilprojekten in SIGNAL gemessen wurden, an die lokalen Bedingungen der Versuchsstandorte von SIGNAL angepasst und getestet. Szenario-Simulationen werden Antworten auf die Frage liefern, wie der potentielle Nutzen der Agroforstsysteme von der Intensität der Bewirtschaftung und der Wasserverfügbarkeit unter den jeweiligen Standortbedingungen abhängt. Zu diesem Zweck werden Response-Funktionen der relevanten Ökosystemleistungen in Bezug auf Variation von Wasserverfügbarkeit, N-Input (Düngung) und anderer Bewirtschaftungsmaßnahmen erstellt. Die für die einzelnen Ökosystemleistungen an den Versuchsstandorten simulierten Response-Funktionen werden in Form von Kennlinien an die anderen Teilprojekte weitergegeben. Nachdem das Modell auf der Prozessebene einzelner Betriebe kalibriert und getestet wurde, werden Simulationen für ganz Deutschland durchgeführt, um herauszufinden, welche Boden- und Klimabedingungen am besten geeignet sind, um Agroforstsysteme zu etablieren. Die Erträge von Feldfrüchten und Bäumen, Nitratauswaschung, N2O-Emissionen und der Auf- bzw. Abbau der organischen Bodensubstanz über Jahrzehnte werden auf Grundlage der besten verfügbaren Bodeninformationen und Wetterdaten simuliert. Unter Verwendung von Klimaprojektionen wird das neue Modell darüber hinaus genutzt, um für die nächsten 50 Jahre zu projizieren, inwieweit sich er Flächenanteil, auf denen Agroforstwirtschaft Vorteile gegenüber dem Einfruchtanbau hat, ausdehnen könnte. Zur Vorhabenbeschreibung des Gesamtprojektverbundes siehe angehängte Gesamtvorhabensbeschreibung.
Das Projekt "Trophic interactions in the soil of rice-rice and rice-maize cropping systems" wird vom Umweltbundesamt gefördert und von Universität Gießen, Institut für Allgemeine und Spezielle Zoologie, Bereich Tierökologie und Spezielle Biologie durchgeführt. Subproject 3 will investigate the effect of shifting from continuously flooded rice cropping to crop rotation (including non-flooded systems) and diversified crops on the soil fauna communities and associated ecosystem functions. In both flooded and non-flooded systems, functional groups with a major impact on soil functions will be identified and their response to changing management regimes as well as their re-colonization capability after crop rotation will be quantified. Soil functions corresponding to specific functional groups, i.e. biogenic structural damage of the puddle layer, water loss and nutrient leaching, will be determined by correlating soil fauna data with soil service data of SP4, SP5 and SP7 and with data collected within this subproject (SP3). In addition to the field data acquired directly at the IRRI, microcosm experiments covering the broader range of environmental conditions expected under future climate conditions will be set up to determine the compositional and functional robustness of major components of the local soil fauna. Food webs will be modeled based on the soil animal data available to gain a thorough understanding of i) the factors shaping biological communities in rice cropping systems, and ii) C- and N-flow mediated by soil communities in rice fields. Advanced statistical modeling for quantification of species - environment relationships integrating all data subsets will specify the impact of crop diversification in rice agro-ecosystems on soil biota and on the related ecosystem services.
Das Projekt "Where to stop? - Efficient projections of correlated impacts at different levels of global warming (EXPACT)" wird vom Umweltbundesamt gefördert und von Potsdam-Institut für Klimafolgenforschung e.V. durchgeführt. The political dialogue on climate stabilization targets demands robust calculations of climate change impacts at different levels of global mean temperature (GMT). The new research group will meet this demand by developing an efficient, probabilistic Emulator of climate eXtremes and their imPACTs (EXPACT), providing unprecedented, spatially correlated projections of the repercussions of different GMT changes. Focusing on the agricultural sector, the potential for simultaneous crop yield losses, and the risk of non-linear responses propagating throughout the world economic system will be quantified. The design of the emulator will in particular allow accounting for different adaptation strategies.
Das Projekt "Main Annulus Gas Path Interactions (MAGPI)" wird vom Umweltbundesamt gefördert und von Rolls-Royce Deutschland Ltd & Co KG durchgeführt. In a modern aero engine, up to 20Prozent of the main annulus flow is bled off to perform cooling and sealing functions. The vicinity of these bleed ports and flow sinks is characterised by complex unsteady swirling flows, which are not fully understood. Even the most up-to-date numerical tools have difficulties predicting the behaviour of the secondary flow system when interacting with the main annulus. The project addresses interactions between main gas path and secondary flow systems in commercial gas turbines in response to Research Activity AERO-2005-1.3.1.2a Concepts and technologies for improving engine thermal efficiency and reducing secondary air losses. Experiments are planned on turbine disc rim and compressor manifold cavity heat transfer, hot gas ingestion, and spoiling effects of cooling air flow and their impact on turbine and compressor performance, as well as a reduction of secondary air losses. The experimental data will be used for better understanding of the complex flow phenomena and improvements of platform and cavity design. Furthermore, the industrial partners will validate their design tools with these test data and improve their prediction capability of secondary flow systems when interacting with the main gas path. The expected results are a reduction of cooling and sealing airflow rates, improvements of the turbine and compressor efficiency and increase of the safety margin of the engine components by better cooling. Expected technical results are: - Knowledge of the interaction phenomena and its effect on cavity heat transfer, spoiling and performance, - Experimental results for validation of improved numerical tools for secondary flow systems, - Optimised design methods and CFD best practice guidelines. The targeted outcome will contribute to the ACARE goal of reduced CO2 emissions via reduced fuel burn of 2Prozent to improve the environment and strengthening the competitiveness of European gas turbine manufacturers.
Das Projekt "Multi-proxy tree-ring analysis of conifer trees disturbed by insect outbreaks" wird vom Umweltbundesamt gefördert und von University of British Columbia, Faculty of Forestry, Department of Forest Resources Management Vancouver durchgeführt. Insect outbreaks are a major disturbance influencing forest dynamics in many ecosystems and can affect forest productivity worldwide. Reconstruction of insect outbreak history is fundamental to forest management. While the action of cambium feeders on trees leads to the formation of scars, that of defoliators is observable via growth suppression in tree rings. The occurrence of past insect attacks can thus be inferred from such tree-ring signatures. However, it necessitates an accurate dating of events, with high temporal resolution, as well as their correct attribution to the right disturbance agent. Fire also leaves scars on trees that can occur on cross-sectional disks where insect scars are already present, thus making them difficult to distinguish. Furthermore, insect-elicited reductions in radial growth may not be clearly visible on samples, and the radial growth response to defoliation often bears a lag of one or more years. This project tackles these issues directly by proposing a multi-proxy approach aiming at improving tree-ring reconstructions of insect outbreaks. Tree rings will be investigated to study radial variations of tree-ring width, wood anatomy, wood density, and wood chemistry. While dendrochronologists have long relied on tree-ring width variations to track the signal induced by climate, geomorphic and ecological processes, they have scarcely exploited the potential of other proxies and rarely used them in combination. The most advanced studies that have embraced these possibilities are owed to dendroclimatologists. The core of this research therefore lies in the use of multiple wood traits to provide answers to the above mentioned dendroecological questions. Two conifer tree species from British Columbia and their respective pests are within the scope of this study: the mountain pine beetle (MPB, Dendroctonus ponderosae Hopkins), a cambium feeder, on lodgepole pine (Pinus contorta Douglas), and the western spruce budworm (WSBW, Choristoneura occidentalis Freeman), a defoliator, on Douglas-fir (Pseudotsuga menziesii Franco). It is hypothesized that insect outbreak disturbance in the form of bark beetle or defoliation events results in abrupt significant structural differences between the wood formed prior to and after the insect attack. Based on pioneering tree-ring research on insect outbreaks, there are great prospects that the variations of wood traits be proven useful for differentiating MPB scars from fire scars and for identifying WSBW defoliation events, possibly with higher temporal resolution. The study of multiple wood traits (proxies) will help gain an understanding of the influence of insect outbreak disturbance on wood formation and tree physiological processes, a prerequisite for improving the detection and dating of events in tree-ring series. (...)
Das Projekt "Teilprojekt B" wird vom Umweltbundesamt gefördert und von MicroDiscovery GmbH durchgeführt. SafetyNet entwickelt neue Methoden zur Bewertung der Wirkstofftoxizität in Leber und Herz basierend auf Netzwerkmodellierung und dynamischen, Dosis-abhängigen Daten aus heterogenen Omics Experimenten. SafetyNet fokussiert sich auf die Berechnung von Safety Indizes (SIs) für Arzneimittel, die beim Menschen eine Leber- und Herztoxizität induzieren. Die SI-Vorhersage basiert auf der Netzwerkmodellierung unter Verwendung verschiedener Arten von Omics-Daten, die für das untersuchte Medikament verfügbar sind (Methylom, Proteom, Transkriptom). Der iterative Prozess von Funktionstests, Text Mining und Modellierung von 'Drug response network' wird im Projektverlauf weiterentwickelt und verwendet, um einen Sicherheitsindex (SI) für jedes untersuchte Medikament zu berechnen. Ein Softwarekonzept wird erstellt und ein Labormuster implementiert, das die verschiedenen Elemente des SafetyNet-Ansatzes kombiniert und die weitere Nutzung in regulatorischen und präklinischen Tests ermöglicht.
Origin | Count |
---|---|
Bund | 210 |
Type | Count |
---|---|
Förderprogramm | 209 |
unbekannt | 1 |
License | Count |
---|---|
open | 209 |
unknown | 1 |
Language | Count |
---|---|
Deutsch | 210 |
Englisch | 188 |
Resource type | Count |
---|---|
Keine | 153 |
Webseite | 57 |
Topic | Count |
---|---|
Boden | 190 |
Lebewesen & Lebensräume | 199 |
Luft | 174 |
Mensch & Umwelt | 210 |
Wasser | 182 |
Weitere | 210 |