Das Projekt "Biotic and abiotic factors that dive the function of microbial communities at biogeochemical interfaces in different soils (BAMISO)" wird vom Umweltbundesamt gefördert und von Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Abteilung für Umweltgenomik durchgeführt. Biogeochemical interfaces shape microbial community function in soil. On the other hand microbial communities influence the properties of biogeochemical interfaces. Despite the importance of this interplay, basic understanding of the role of biogeochemical interfaces for microbial performance is still missing. We postulate that biogeochemical interfaces in soil are important for the formation of functional consortia of microorganisms, which are able to shape their own microenvironment and therefore influence the properties of interfaces in soil. Furthermore biogeochemical interfaces act as genetic memory of soils, as they can store DNA from dead microbes and protect it from degradation. We propose that for the formation of functional biogeochemical interfaces microbial dispersal (e.g. along fungal networks) in response to quality and quantity of bioavailable carbon and/or water availability plays a major role, as the development of functional guilds of microbes requires energy and depends on the redox state of the habitat.To address these questions, hexadecane degradation will be studied in differently developed artificial and natural soils. To answer the question on the role of carbon quantity and quality, experiments will be performed with and without litter material at different water contents of the soil. Experiments will be performed with intact soil columns as well as soil samples where the developed interface structure has been artificially destroyed. Molecular analysis of hexadecane degrading microbial communties will be done in vitro as well as in situ. The corresponding toolbox has been successfully developed in the first phase of the priority program including methods for genome, transcriptome and proteome analysis.
Das Projekt "Analysis of dairy production systems differentiated by location" wird vom Umweltbundesamt gefördert und von Universität Bonn, Institut für Lebensmittel- und Ressourcenökonomik (ILR), Professur Wirtschafts- und Agrarpolitik durchgeführt. Dairy farming across Germany displays diverse production systems. Factor endowment, management, technology adoption as well as competitive dynamics in the local or regional land, agribusiness and dairy processing sectors contribute to this differentiation on farm level. These differences impact on the ability of dairy farms and regional dairy production systems to successfully respond to pressures arising from future market and policy changes. The overall objective of the research activities of which this project is a part of, is to develop a thorough understanding of the processes that govern the spatial dynamics of dairy farm development in different regions in Germany. The central hypothesis of this research project is that management system and technological choices differ systematically across local production and market conditions. The empirical approach will focus on the estimation of farm specific nonparametric cost functions for dairy farms located in across Germany differentiated by time and location. A spatially differentiated data base with information on input use, resource availability, as well as local market conditions for land and output markets will be compiled. The nonparametric approach is specifically suited to disclose a more accurate representation of dairy production system heterogeneity across locations and time compared to parametric concepts as it provides the necessary flexibility to accommodate non-linearities relevant for a wide domain of explanatory variables. The methodology employed goes beyond the state of the art of the literature as it combines kernel density estimation with a Bayesian sampling approach to provide theory consistent parameters for each farm in the data sample.The specific methodological hypothesis is that the nonparametric approach is superior to current parametric techniques and this hypothesis is tested using statistical model evaluation. Regarding the farm management and technological choices, we hypothesize that land suitability for feed production determines the farm intensity of dairy production and thus management and technological choices. With respect to the ability of farms to successfully respond to market pressures we hypothesize that farms at the upper and lower tail of the intensity distribution both can generate positive returns from dairy production. These last two hypotheses will be tested using the estimated spatially differentiated farm specific costs and marginal costs.The expected outcomes are of relevance for the agricultural sector and the food supply chain economy as a whole as fundamental market structure changes in the dairy sector are ongoing due to the abolition of the quota regulation in the years 2014/2015. Thus, exact knowledge about differences and development of dairy cost heterogeneity of farms within and between regions are an important factor for the actors involved in the market as well as the political support of this process.
Das Projekt "Biological Regulation of Subsoil C-cycling under Field Conditions" wird vom Umweltbundesamt gefördert und von Universität Hohenheim, Institut für Bodenkunde und Standortslehre, Fachgebiet Bodenbiologie durchgeführt. The nature of the microbial communities inhabiting the deeper soil horizons is largely unknown. It is also not clear why subsurface microorganisms do not make faster use of organic compounds under field conditions. The answer could be provided by a reciprocal soil transfer experiment studying the response of transferred soils to fluctuations in microclimate, organic inputs, and soil biota. The subproject P9 will be responsible for the establishment of reciprocal transfer experiments offering a strong link between subgroups interested in organic matter quality, transport of organic substances, as well as functions of the soil microbial community. A single, high molecular weight substrate (13C labelled cellulose) will be applied at two different levels in the pre-experiment to understand the dose-dependent reaction of soil microorganisms in transferred surface and sub-soils. Uniformly 13C labelled beech roots - representing complex substrates - will be used for the main reciprocal soil transfer experiment. We hypothesize that transferring soil cores between subsoil and surface soil as well as addition of labelled cellulose or roots will allow us to evaluate the relative impact of surface/subsurface habitat conditions and resource availability on abundance, function, and diversity of the soil microbial community. The second objective of the subproject is to understand whether minerals buried within different soil compartments (topsoil vs. subsoil) in the field contribute to creation of hot spots of microbial abundance and activity within a period of two to five years. We hypothesize that soil microorganisms colonize organo-mineral complexes depending on their nutritional composition and substrate availability. The existence of micro-habitat specific microbial communities could be important for short term carbon storage (1 to 6 years). The third objective is to understand the biogeography and function of soil microorganisms in different subsoils. Parent material as well as mineral composition might control niche differentiation during soil development. Depending on size and interconnectedness of niches, colonization and survival of soil microbial communities might be different in soils derived from loess, sand, terra fusca, or sandstone. From the methodological point of view, our specific interest is to place community composition into context with soil microbial functions in subsoils. Our subgroup will be responsible for determining the abundance, diversity, und function of soil microorganisms (13C microbial biomass, 13C PLFA, enzyme activities, DNA extraction followed by quantitative PCR). Quantitative PCR will be used to estimate total abundances of bacteria, archaea and fungi as well as abundances of specific groups of bacteria at high taxonomic levels. We will apply taxa specific bacterial primers because classes or phyla might be differentiated into ecological categories on the basis of their life strategies.
Das Projekt "Spatial heterogeneity and substrate availability as limiting factors for subsoil C-turnover" wird vom Umweltbundesamt gefördert und von Universität Bochum, Geographisches Institut durchgeführt. In subsoils, organic matter (SOM) concentrations and microbial densities are much lower than in topsoils and most likely highly heterogeneously distributed. We therefore hypothesize, that the spatial separation between consumers (microorganisms) and their substrates (SOM) is an important limiting factor for carbon turnover in subsoils. Further, we expect microbial activity to occur mainly in few hot spots, such as the rhizosphere or flow paths where fresh substrate inputs are rapidly mineralized. In a first step, the spatial distribution of enzyme and microbial activities in top- and subsoils will be determined in order to identify hot spots and relate this to apparent 14C age, SOM composition, microbial community composition and soil properties, as determined by the other projects within the research unit. In a further step it will be determined, if microbial activity and SOM turnover is limited by substrate availability in spatially distinct soil microsites. By relating this data to root distribution and preferential flow paths we will contribute to the understanding of stabilizing and destabilizing processes of subsoil organic matter. As it is unclear, at which spatial scale these differentiating processes are effective, the analysis of spatial variability will cover the dm to the mm scale. As spatial segregation between consumers and substrates will depend on the pore and aggregate architecture of the soil, the role of the physical integrity of these structures on SOM turnover will also be investigated in laboratory experiments.
Das Projekt "The detritusphere as the biogeochemical interface for bacterial and fungal degradation of MCPA" wird vom Umweltbundesamt gefördert und von Universität Hohenheim, Institut für Bodenkunde und Standortslehre durchgeführt. The detritusphere is an excellent model to study microbial-physicochemical interactions during degradation of the herbicide MCPA. Whereas during the first phase of SPP 1315 we focused on bacterial and fungal abundance at the soil litter interface and carbon flow between different compartments, the second phase will be devoted to elucidating complex regulation mechanisms of MCPA degradation in the detritusphere: (1) At the cellular level, co-substrate availability and laccase abundance might be important regulators, (2) at the community level, bacteria harbouring different classes of tfdA genes might control degradation of MCPA and (3) at the microhabitat level, interaction between MCPA degraders and organo-mineral surfaces as well as transport processes might be important regulators. The concept of hierarchical regulation of MCPA degradation will be included into the modelling of small-scale microbial growth, MCPA transport and MCPA degradation near the soil-litter interface.
Das Projekt "Origin and fate of dissolved organic matter in the subsoil" wird vom Umweltbundesamt gefördert und von Leibniz Universität Hannover, Institut für Bodenkunde durchgeführt. Dissolved organic matter (DOM) is one major source of subsoil organic matter (OM). P5 aims at quantifying the impact of DOM input, transport, and transformation to the OC storage in the subsoil environment. The central hypotheses of this proposal are that in matric soil the increasing 14C age of organic carbon (OC) with soil depth is due to a cascade effect, thus, leading to old OC in young subsoil, whereas within preferential flowpaths sorptive stabilization is weak, and young and bioa-vailable DOM is translocated to the subsoil at high quantities. These hypotheses will be tested by a combination of DOC flux measurements with the comparative analysis of the composition and the turnover of DOM and mineral-associated OM. The work programme utilizes a DOM monitoring at the Grinderwald subsoil observatory, supplemented by defined experiments under field and labora-tory conditions, and laboratory DOM leaching experiments on soils of regional variability. A central aspect of the experiments is the link of a 13C-leaf litter labelling experiment to the 14C age of DOM and OM. With that P5 contributes to the grand goal of the research unit and addresses the general hypotheses that subsoil OM largely consists of displaced and old OM from overlying horizons, the sorption capacity of DOM and the pool size of mineral-associated OM are controlled by interaction with minerals, and that preferential flowpaths represent 'hot spots' of high substrate availability.
Das Projekt "Calcium cycling in the soil-fig-bat compartment of a neotropical rain forest on spatially heterogeneous substrate" wird vom Umweltbundesamt gefördert und von Universität Bern, Geographisches Institut, Gruppe Bodenkunde durchgeführt. Calcium supply in tropical soils is variable and frequently low. In spite of the heterogeneous Ca supply, some plant species, such as figs, maintain high Ca concentrations in their tissues. Figs are keystone species with more than proportional importance for the functioning of a tropical rain forest. High Ca concentrations in fig fruits may render them particularly attractive for frugivorous vertebrates. We propose to study the whole Ca cycling from soil through a selected fig species, Ficus insipida Willd. and frugivorous bats, their main dispersers, back to soil. The study will be conducted in Panama on sites differing in soil Ca status to assess the importance of soil Ca availability for fig fruit content and bat reproduction. We will quantify aboveground Ca fluxes for 16 trees along a gradient of Ca availability in soil. We will determine (1) Ca concentrations in soils, figs and leaves, (2) nutritional quality of fig and other bat-dispersed fruits and their importance for Ca balance in relation to reproduction of fruit-eating bats, (3) Ca fluxes with litterfall, throughfall, stemflow, bat pellets and faeces, (4) the importance of the contribution of bats to the Ca cycle of individual fig trees, and (5) the effect of fig trees on soil Ca concentrations.
Das Projekt "Establishment and exploration of a gas ion source for micro-scale radiocarbon dating of glaciers and groundwater" wird vom Umweltbundesamt gefördert und von Universität Heidelberg, Institut für Umweltphysik durchgeführt. Recent progress in the operation of CO2 gas ion sources for accelerator mass spectrometer (AMS) 14C analysis on microgram-size samples opens a wide range of new applications in dating studies, e.g. for environmental and archeological applications. This proposal aims at implementing a gas ion source at the AMS system MICADAS at the Klaus-Tschira Laboratory of the Curt-Engelhorn-Zentrum für Archäometrie (CEZA) in Mannheim and to use this new capability for cutting-edge applications in environmental studies, namely the dating of small amounts of organic carbon contained in glacier ice and of specific organic compounds in ground water. Cold glaciers hold unique records on past climate and atmospheric composition. Mid-latitude ice cores furthermore enable reconstructions of recent ice chemistry changes, but cannot be dated by stratigraphic methods. For such ice bodies, only radiometric dating based on 14C analysis of organic matter contained in the ice matrix presently offers a reasonable dating potential in the late Holocene and beyond. The challenge of this approach lies in the very restricted availability of this matter, but the ability to analyse microgram samples of organic carbon from ice via a gas ion source should now enable reliable 14C dating of ice. Ground water constitutes an important water resource worldwide, especially in semi-arid regions, and in addition constitutes a useful climate archive. Dating of ground water by 14C in the dissolved inorganic carbon (DIC) is standard but problematic due to the complex carbonate geochemistry. Dating of ground water based on dissolved organic carbon (DOC) has been attempted with mixed success, but now the new analytical developments enable compound-specific 14C analyses of the various DOC components, offering the chance to identify compounds suitable for dating. This project is based on the extensive experience of the collaborating scientists in 14C analytics and applications as well as in the use of glacier ice and ground water as archives, including the development and application of 14C dating methods for these systems. It will establish 14C-measurements at the MICADAS AMS of the CEZA via a gas ion source on a routine base to analyse CO2-samples in the range of 5 to 40 microgram C at a precision down to 0,5 Prozent. By improving existing sample preparation techniques for glacier ice samples, reliable 14C values of the particulate and dissolved organic fractions from small (some 100 g) ice samples shall be obtained. This capability will be applied to constrain ages of cold, sedimentary glaciers as well as of small scale, cold Alpine congelation ice bodies. The project will further develop and test the tools required for micro-scale, compound-specific radiocarbon dating of ground water via its organic fraction. For this purpose, ground water samples from the Upper Rhine Graben area will be analysed, where extensive isotopic data, including DIC 14C values, are available for comparison.
Das Projekt "Evaluating the impact of drought on forest die-back in Europe and western Canada (Water03 - IDDEC)" wird vom Umweltbundesamt gefördert und von Technische Universität München, Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt, Fachgebiet für Ökoklimatologie durchgeführt. While many forests and woodlands may be at increasing risk of climate-induced dieback, significant knowledge gaps remain in our understanding of the causes of climate-induced tree mortality. Recent publications underscore the critical importance of understanding the mechanisms that trigger plant mortality (Adams et al., 2009), particularly regarding features and traits that could be used as physiological indicators of tree death (McDowell et al., 2008). Alterations in wood formation and structure often occur prior to visual symptoms of crown decline. Thus, physiological, morphological, and anatomical traits related to xylem ('water-conducting pipes') may provide early-warning signals of drought-induced dieback. A better mechanistic understanding of drought-induced forest dieback would improve our ability to predict tree mortality and future changes in forest composition and coverage. The project aims at studying how drought episodes promote dieback via changes in xylem structure. Different genotypes of aspen (parkland region and the southern boundary of the boreal forest in western Canada), oak (Southern Europe) and pine (experiment) will be studied along gradients of moisture availability. Xylem-related traits that will be measured include ring-width, number of missing rings, quantitative wood anatomical structures (diameter and frequency of vessels/ tracheids, inter-vessel pit structure) as well as cavitation resistance, hydraulic conductivity, and water potentials.
Das Projekt "Steady-State Dilution and Mixing-Controlled Reactions in Three-Dimensional Heterogeneous Porous" wird vom Umweltbundesamt gefördert und von Eberhard Karls Universität Tübingen, Zentrum für Angewandte Geowissenschaften (ZAG), Arbeitsgruppe Hydrogeology durchgeführt. Understanding transport of contaminants is fundamental for the management of groundwater re-sources and the implementation of remedial strategies. In particular, mixing processes in saturated porous media play a pivotal role in determining the fate and transport of chemicals released in the subsurface. In fact, many abiotic and biological reactions in contaminated aquifers are limited by the availability of reaction partners. Under steady-state flow and transport conditions, dissolved reactants come into contact only through transverse mixing. In homogeneous porous media, transverse mixing is determined by diffusion and pore-scale dispersion, while in heterogeneous formations these local mixing processes are enhanced. Recent studies investigated the enhancement of transverse mixing due to the presence of heterogeneities in two-dimensional systems. Here, mixing enhancement can solely be attributed to flow focusing within high-permeability inclusions. In the proposed work, we will investigate mixing processes in three dimensions using high-resolution laboratory bench-scale experiments and advanced modeling techniques. The objective of the proposed research is to quantitatively assess how 3-D heterogeneity and anisotropy of hydraulic conductivity affect mixing processes via (i) flow focusing and de-focusing, (ii) increase of the plume surface, (iii) twisting and intertwining of streamlines and (iv) compound-specific diffusive/dispersive properties of the solute species undergoing transport. The results of the experimental and modeling investigation will allow us to identify effective large-scale parameters useful for a correct description of conservative and reactive mixing at field scales allowing to explain discrepancies between field observations, bench-scale experiments and current stochastic theory.
Origin | Count |
---|---|
Bund | 54 |
Type | Count |
---|---|
Förderprogramm | 54 |
License | Count |
---|---|
offen | 54 |
Language | Count |
---|---|
Deutsch | 9 |
Englisch | 50 |
Resource type | Count |
---|---|
Keine | 46 |
Webseite | 8 |
Topic | Count |
---|---|
Boden | 51 |
Lebewesen & Lebensräume | 53 |
Luft | 37 |
Mensch & Umwelt | 54 |
Wasser | 41 |
Weitere | 54 |