API src

Found 2584 results.

Related terms

Überschreitung der Belastungsgrenzen für Eutrophierung

Überschreitung der Belastungsgrenzen für Eutrophierung Nährstoffeinträge (vor allem Stickstoff) aus der Luft belasten Land-Ökosysteme und gefährden die biologische Vielfalt. Zur Bewertung dieser Belastung stellt man ökosystemspezifische Belastungsgrenzen (Critical Loads) den aktuellen Stoffeinträgen aus der Luft gegenüber. Trotz rückläufiger Stickstoffbelastungen in Deutschland besteht weiterhin Handlungsbedarf – vor allem bei den Ammoniak-Emissionen. Situation in Deutschland Im Jahr 2019 (letzte verfügbare Daten) wurden die ökologischen Belastungsgrenzen für ⁠ Eutrophierung ⁠ durch Stickstoff in Deutschland auf 69 % der Flächen empfindlicher Ökosysteme überschritten (siehe Karte „Überschreitung des Critical Load für Eutrophierung durch die Stickstoffeinträge im Jahr 2019“). Die zur Flächenstatistik dieser Überschreitung herangezogenen Ökosystemtypen stammen aus dem CORINE-Landbedeckungsdatensatz von 2012 und bilden vor allem Waldökosysteme ab (ca. 96 %). Besonders drastisch sind die Überschreitungen in Teilen Nordwestdeutschlands. Aufgrund der dort ansässigen Landwirtschaft und intensiv betriebenen Tierhaltung ist der Stickstoffeintrag dort besonders hoch. So sind etwa zwei Drittel der Stickstoffeinträge auf Ammoniakemissionen zurückzuführen. Im Rahmen eines ⁠ UBA ⁠-Vorhabens zur Modellierung der Stickstoffdeposition (PINETI-4, Abschlussbericht in prep.) konnte die Entwicklung der Belastung methodisch konsistent für eine lange Zeitreihe (2000 bis 2019) rückgerechnet werden. Die nationalen Zeitreihendaten zeigen, dass der Anteil der Flächen in Deutschland, auf denen die ökologischen Belastungsgrenzen überschritten wurden, von 84 % im Jahr 2000 auf 69 % im Jahr 2019 zurückging (siehe Abb. „Anteil der Fläche empfindlicher Land-Ökosysteme mit Überschreitung der Belastungsgrenzen für Eutrophierung“). Die Abnahme der Belastungen spiegelt größtenteils den Rückgang der Emissionen durch Luftreinhaltemaßnahmen wider. Karte: Überschreitung des Critical Load für Eutrophierung durch Stickstoffeinträge im Jahr 2019 Quelle: Kranenburg et al. (2024) Flächenanteil empfindlicher Land-Ökosysteme mit Überschreitung der Belastungsgrenzen Eutrophierung Quelle: Kranenburg et al. (2024) Diagramm als PDF Diagramm als Excel mit Daten Handlungsbedarf trotz sinkender Stickstoffeinträge Auch in den nächsten Jahren ist wegen der bisher nur unwesentlich abnehmenden Ammoniak-Emissionen – vornehmlich aus der Tierhaltung – mit einer weiträumigen ⁠ Eutrophierung ⁠ naturnaher Ökosysteme zu rechnen. Bei der Minderung von diffusen Stickstoffemissionen in die Luft besteht daher erheblicher Handlungsbedarf. Was sind ökologische Belastungsgrenzen für Eutrophierung? Zur Bewertung der Stoffeinträge werden ökologische Belastungsgrenzen (⁠ Critical Loads ⁠) ermittelt. Nach heutigem Stand des Wissens ist bei deren Einhaltung nicht mit schädlichen Wirkungen auf Struktur und Funktion eines Ökosystems zu rechnen. ⁠ Ökologische Belastungsgrenzen ⁠ sind somit ein Maß für die Empfindlichkeit eines Ökosystems und erlauben eine räumlich differenzierte Gegenüberstellung der Belastbarkeit eines Ökosystems mit aktuellen atmosphärischen Stoffeinträgen. Das dadurch angezeigte Risiko bedeutet nicht, dass in dem betrachteten Jahr tatsächlich schädliche chemische Kennwerte erreicht oder biologische Wirkungen sichtbar sind. Es kann Jahrzehnte dauern, bis Ökosysteme auf Überschreitungen der ökologischen Belastungsgrenzen reagieren. Im Rückschluss ist auch die Erholung des Ökosystems auf vorindustrielles Niveau sehr langwierig, wenn nicht sogar eine irreversible Schädigung des Ökosystems vorliegt. Beide Prozesse sind abhängig von Stoffeintragsraten, meteorologischen und anderen Randbedingungen sowie von chemischen Ökosystemeigenschaften. Daher sind absolute Schadprognosen mittels der Überschreitungen der ökologischen Belastungsgrenzen prinzipiell nicht möglich. Stickstoffdepositionen – ein Treiber des Biodiversitätsverlusts Ein übermäßiger atmosphärischer Eintrag (⁠ Deposition ⁠) von Nährstoffen (vor allem Stickstoff) und deren Anreicherung in Land-Ökosystemen kann auf lange Sicht Ökosysteme stark beeinträchtigen. So kann es zu chronischen Schäden der Ökosystemfunktionen (wie der Primärproduktivität und des Stickstoffkreislaufs) kommen. Auch Veränderungen des Pflanzenwachstums und der Artenzusammensetzung zugunsten stickstoffliebender Arten (⁠ Eutrophierung ⁠) können hervorrufen werden. Außerdem wird die Anfälligkeit vieler Pflanzen gegenüber Frost, ⁠ Dürre ⁠ und Schädlingsbefall erhöht. Atmosphärische Einträge führen zu einer weiträumigen Angleichung der Stickstoffkonzentrationen im Boden auf einem nährstoffreichen Niveau. Die derzeit hohen Stickstoffeinträge in natürliche und naturnahe Land-Ökosysteme sind eine Folge menschlicher Aktivitäten, wie Landwirtschaft oder Verbrennungsprozesse. Diese sind mit hohen Emissionen von chemisch und biologisch wirksamen (reaktiven) Stickstoffverbindungen in die Luft verbunden. Aus der ⁠ Atmosphäre ⁠ werden diese Stickstoffverbindungen über Regen, Schnee, Nebel, Raureif, Gase und trockene Partikel wieder in Land-Ökosysteme eingetragen. Die resultierende Überdüngung ist eine der Hauptursachen für den Rückgang der ⁠ Biodiversität ⁠. Fast die Hälfte der in der Roten Liste für Deutschland aufgeführten Farn- und Blütenpflanzen sind durch Stickstoffeinträge gefährdet. Ziele und Maßnahmen zur Verringerung der Stickstoffeinträge Ein langfristiges Ziel der Europäischen Union (EU) und der Genfer Luftreinhaltekonvention (⁠ UNECE ⁠ Convention on Long-Range Transboundary Air Pollution, CLRTAP) ist die dauerhafte und vollständige Unterschreitung der ökologischen Belastungsgrenzen für ⁠ Eutrophierung ⁠. International wurden deshalb in der sog. neuen ⁠ NEC-Richtlinie ⁠ ( Richtlinie (EU) 2016/2284 vom 14.12.2016) für alle Mitgliedstaaten weitere Minderungen der ⁠ Emission ⁠ von reaktiven Stickstoffverbindungen (NH x , Stickstoffoxide (NO x )) vereinbart, die bis 2030 erreicht werden müssen. Für Deutschland ergeben sich folgende nationale Emissionsminderungsverpflichtungen für Stickstoff für das Jahr 2030 und darüber hinaus im Vergleich zum Basisjahr 2005: Ammoniak (NH 3 ): minus 29 % Stickstoffoxide (NO x ): minus 65 % (siehe auch „Emissionen von Luftschadstoffen“ ). Konkrete nationale Maßnahmen, die zum Erreichen der oben genannten Minderungsverpflichtungen geeignet sind, werden derzeit in einem Nationalen Luftreinhalteprogramm zusammengestellt. Maßnahmen zur Begrenzung der negativen Auswirkungen des reaktiven Stickstoffs, zu denen auch die Eutrophierung von Ökosystemen zählt, sind in der Veröffentlichung des Umweltbundesamtes "Reaktiver Stickstoff in Deutschland" enthalten. Auch das Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit (⁠ BMU ⁠) verfolgt den Ansatz einer nationalen Stickstoffminderungsstrategie . Weitere Informationen bietet auch das Sondergutachten des SRU „Stickstoff: Lösungen für ein drängendes Umweltproblem“ . Hintergrundwissen zur Modellierung von atmosphärischen Stoffeinträgen bietet der Bericht zum Forschungsvorhaben „PINETI-4: Modelling and assessment of acidifying and eutrophying atmospheric deposition to terrestrial ecosystems“.

Burnt Area Daily NRT Incremental Product - MODIS - Europe

The product is automatically derived from Aqua/Terra (MODIS) satellite imagery in near-real time. It is an incremental product, meaning that the retrieved results are updated as soon as new input data becomes available over a timespan of ten days. Besides the fire perimeter and detection time, each feature contains information about the severity of the burning.

Burnt Area Daily NRT Incremental Product - Sentinel-3 - Europe

The product is automatically derived from Sentinel-3 (OLCI) satellite imagery in near-real time. It is an incremental product, meaning that the retrieved results are updated as soon as new input data becomes available over a timespan of ten days. Besides the fire perimeter, and detection time each feature contains information about the severity of the burning.

Burnt Area Monthly Product - Sentinel-3 - Europe

This data set represents the monthly, accumulated results of the final (10-day) version of the fire perimeters from the "Burnt Area Daily NRT Incremental Product - Europe, Sentinel-3" dataset. The burn perimeters are spatially and temporally correlated, so that interrelated detections from consecutive observations are combined into a single feature. A perimeter is interpreted as belonging to a given event if a spatial overlap exists within a time frame of 15 days. Besides the geometry, attribute information is also combined while considering the size of the perimeter as a weighting factor. Each feature contains information about the final fire perimeter, Date/Time of the first detection, and the averaged burn severity.

Berichtspflichten

Die Betreiber bestimmter genehmigungsbedürftiger Anlagen sind dazu verpflichtet, folgende Berichte über die von diesen Anlagen ausgehenden Emissionen abzugeben: Emissionserklärung (11. BImSchV) → alle 4 Jahre PRTR (Pollutant Release and Transfer Register) → jährlich Großfeuerungsanlagen (13./17. BImSchV) → jährlich Die Berichterstattung erfolgt dabei über das Erfassungssystem BUBE-Online (Betriebliche Umweltdatenberichterstattung). Emissionserklärung PRTR (Pollutant Release and Transfer Register) GFA (Großfeuerungsanlagen) BUBE (Betriebliche Umweltdatenberichterstattung) Gemäß der Elften Verordnung zur Durchführung des Bundes- Immissionsschutzgesetzes ( Verordnung über Emissionserklärungen – 11. BImSchV ) vom 05. März 2007 sind die Betreiber bestimmter genehmigungsbedürftiger Anlagen verpflichtet, die von diesen Anlagen ausgehenden Luftemissionen zu melden. Meldepflichtig sind die Betreiber von genehmigungsbedürftigen Anlagen nach der 4. BImSchV . Nicht meldepflichtig sind die Betreiber von Anlagen, die in § 1 der 11. BImSchV aufgeführt sind. Der Inhalt der Emissionserklärung ist in § 3 der 11. BImSchV und im Anhang der 11. BImSchV aufgeführt. Die Emissionserklärung ist ab dem Berichtsjahr 2008 alle 4 Jahre im Folgejahr zu erstellen. 30. April: Beantragungsfrist einer Fristverlängerung für die Abgabe der Emissionserklärung 31. Mai: Abgabefrist der Emissionserklärung 30. Juni: Abgabefrist der Emissionserklärung bei Fristverlängerung Hinweis: Aktuell erfolgt eine Neuprogrammierung des BUBE-Systems. Die Arbeiten hierzu sind zu großen Teilen abgeschlossen, allerdings ist die Softwarekomponente zur Berichterstattung nach 11. BImSchV noch nicht betriebsfertig. Daher wird die Datenübermittlung nach § 4 Abs. 2 Satz 1 der 11. BImSchV erst zu einem späteren Zeitpunkt erfolgen, über den wir Sie noch rechtzeitig informieren werden. Der Erklärungszeitraum wird dabei unverändert das Berichtsjahr 2024 bleiben. Diese Verzögerung ist auf den Fertigstellungsgrad der von behördlicher Seite eingesetzten Software zurückzuführen und liegt damit nicht im Verschulden des Anlagenbetreibers. Somit stellt sie keine Ordnungswidrigkeit im Sinne des § 62 Absatz 2 Nummer 2 BImSchG dar. Die Betreiber einer Anlage, von der nur in geringem Umfang Luftemissionen ausgehen, können nach § 6 der 11. BImSchV von der Pflicht zur Abgabe einer Emissionserklärung befreit werden. Die Erfassung und Abgabe der Emissionserklärung erfolgt über das Erfassungssystem BUBE-Online . Industriebetriebe, deren Emissionen bestimmte Schwellenwerte überschreiten, sind seit 2008 dazu verpflichtet, diese jährlich in einem integrierten Schadstofffreisetzungs- und -verbringungsregister zu melden. Diese Daten sind der Bevölkerung im Internet öffentlich zugänglich und informieren über: die Freisetzung von Schadstoffen in Luft, Wasser und Boden, die Verbringung von Schadstoffen in Abwasser sowie die Verbringung von gefährlichen und nicht gefährlichen Abfällen. Die rechtliche Grundlage hierfür bildet die Verordnung über die Schaffung eines Europäischen Schadstofffreisetzungs- und -verbringungsregisters (E-PRTR-VO). Meldepflichtig sind die Betreiber von Betriebseinrichtungen nach § 3 SchadRegProtAG . Der Inhalt des Berichtes ist im Anhang III (S. 16f) der E-PRTR-VO festgelegt. Bitte beachten Sie, dass sich die Fristen für die PRTR-Berichterstattung ( § 3 Abs. 2 SchadRegProtAG ) verkürzt haben. Wir empfehlen, die Bearbeitung der Berichte frühzeitig zu beginnen und abzuschließen. Der PRTR-Bericht ist jährlich im Folgejahr zu erstellen. 31. März: Beantragungsfrist einer Fristverlängerung für die Abgabe des PRTR-Berichtes 30. April: Abgabefrist des PRTR-Berichtes 31. Mai: Abgabefrist des PRTR-Berichtes bei Fristverlängerung Anfragen richten Sie gerne per E-Mail an PRTR-Kataster@SenMVKU.berlin.de Die Erfassung und Abgabe des PRTR-Berichtes erfolgt über das Erfassungssystem BUBE-Online . Großfeuerungsanlagen (GFA) sind große industrielle Anlagen zur Energieerzeugung durch Verbrennung fossiler Energieträger (Kraftwerke oder industrielle Heizwerke). Diese Anlagen erzeugen bei Verbrennungsprozessen große Mengen an luftverunreinigenden Stoffen wie Schwefeloxide (SO x ), Stickstoffoxide (NO x ) und Staub. Gemäß Verordnung über Großfeuerungs-, Gasturbinen- und Verbrennungsmotoranlagen – 13. BImSchV vom 06. Juli 2021 und Verordnung über die Verbrennung und die Mitverbrennung von Abfällen – 17. BImSchV vom 02. Mai 2013 haben die Anlagenbetreiber jährlich für jede einzelne Anlage die Emissionen an Schwefeloxiden (SO x ), Stickstoffoxiden (NO x ) und Gesamtstaub sowie den Energieeinsatz zu berichten. Meldepflichtig sind die Betreiber von Feuerungsanlagen einschließlich Gasturbinenanlagen (auch zum Antrieb von Arbeitsmaschinen) und Betreiber von abfallmitverbrennenden Großfeuerungsanlagen mit einer Feuerungswärmeleistung von 50 Megawatt oder mehr für den Einsatz fester, flüssiger oder gasförmiger Brennstoffe. Der Inhalt des Berichtes ist im § 22 der 13. BImSchV bzw. § 22 der 17. BImSchV geregelt. Der GFA-Bericht ist jährlich im Folgejahr zu erstellen. 30. April: Abgabefrist des GFA-Berichtes Die Erfassung und Abgabe des GFA-Berichtes erfolgt über das Erfassungssystem BUBE-Online . Die Berichterstattung für die zuvor aufgeführten Erklärungen erfolgt über das Erfassungssystem BUBE-Online (Betriebliche Umweltdatenberichterstattung). Anfragen richten Sie gerne per E-Mail an PRTR-Kataster@SenMVKU.berlin.de

Orientierende Erfassung von Black Carbon (BC) in Deutschland und Identifikation relevanter Quellen mit Chemie-Transport-Modellen

Schwarzer Kohlenstoff (Black Carbon, BC) ist eine Feinstaubkomponente, die bei Verbrennungsprozessen in die ⁠ Atmosphäre ⁠ freigesetzt wird und negative Auswirkungen auf die Gesundheit und das ⁠ Klima ⁠ hat. Aktuelle Emissions- und Konzentrationsabschätzungen sind unsicher. Im Projekt wurden im ersten Schritt die Emissionsquellen von BC für die Modellierung verbessert. Im zweiten Schritt wurde die räumliche Konzentrationsverteilung von BC in Deutschland durch eine kombinierte Auswertung von Messdaten und Modellierungsergebnissen optimiert. Veröffentlicht in Texte | 95/2024.

Energiebedingte Emissionen von Klimagasen und Luftschadstoffen

Energiebedingte Emissionen von Klimagasen und Luftschadstoffen Als energiebedingte Emissionen bezeichnet man die Freisetzung von Treibhausgasen und Luftschadstoffen, die bei der Umwandlung von Energieträgern etwa in Strom und Wärme entstehen. Sie machten im Jahr 2022 etwa 85 % der deutschen Treibhausgas-Emissionen aus. Die Emissionen sind seit 1990 leicht rückläufig. Hauptverursacher der energiebedingten Treibhausgas-Emissionen ist die Energiewirtschaft. "Energiebedingte Emissionen" Überall, wo fossile Energieträger wie Kohle, Erdgas oder Mineralöl in elektrische oder thermische Energie (Strom- und Wärmeproduktion) umgewandelt werden, werden sogenannte „energiebedingte Emissionen“ freigesetzt. Bei diesen handelt es sich sowohl um Treibhausgase – hauptsächlich Kohlendioxid (CO 2 ) – als auch um sogenannte klassische Luftschadstoffe. Das Verbrennen von fester, flüssiger oder gasförmiger ⁠ Biomasse ⁠ wird gemäß internationalen Bilanzierungsvorgaben als CO 2 -neutral bewertet. Andere dabei freigesetzte klassische Luftschadstoffe, wie zum Beispiel Stickoxide, werden jedoch bilanziert. Im Verkehrsbereich entstehen energiebedingte Emissionen durch Abgase aus Verbrennungsmotoren. Darüber hinaus entstehen energiebedingt auch sogenannte diffuse Emissionen, zum Beispiel durch die Freisetzung von Grubengas aus stillgelegten Bergwerken. Entwicklung der energiebedingten Treibhausgas-Emissionen Die energiebedingten Emissionen machten im Jahr 2022 etwa 85 % der deutschen ⁠ Treibhausgas ⁠-Emissionen aus. Hauptverursacher war mit 39 % der energiebedingten Treibhausgas-Emissionen die Energiewirtschaft, also vor allem die öffentliche Strom- und Wärmeerzeugung in Kraftwerken sowie Raffinerien (siehe Abb. „Energiebedingte Treibhausgas-Emissionen“). Die von der Energiewirtschaft ausgestoßene Menge an Treibhausgasen ist seit 1990 in der Tendenz rückläufig. Teilweise gibt es vorübergehend besonders starke Einbrüche, wie etwa im Jahr der Wirtschaftskrise 2009 oder im von der Corona-Pandemie geprägten Jahr 2020. Der Anteil des Sektors Verkehr lag 2021 bei 23,3 % (darunter allein der Straßenverkehr 22,5 %), Industrie bei 18 %, private Haushalte bei 13 % und der Gewerbe-, Handels- und Dienstleistungssektor bei 4 %. Die energiebedingten Treibhausgas-Emissionen bestehen zu 98 % aus Kohlendioxid (CO 2 ). Methan (CH 4 ) und Lachgas (N 2 O) machen den Rest aus (CO 2 -Äquivalente). Methan wird zum Großteil aus sogenannten diffusen Quellen freigesetzt, vor allem bei der Kohleförderung als Grubengas. Energiebedingte Lachgas-Emissionen entstehen durch Verbrennungsprozesse. Die diffusen Emissionen sanken seit 1990. Hauptquelle der diffusen Emissionen war der Ausstoß von Methan aus Kohlegruben. Die Förderung von Kohle ging seit 1990 deutlich zurück, Grubengas wurde verstärkt aufgefangen und energetisch genutzt. Energiebedingte Kohlendioxid-Emissionen durch Stromerzeugung Die Emissionen von Kohlendioxid (CO 2 ) aus der deutschen Stromerzeugung gingen seit dem Jahr 1990 im langjährigen Trend zurück (siehe Abb. „Treibhausgas-Emissionen des deutschen Strommixes“ im nächsten Abschnitt). Die Gründe hierfür liegen vor allem in der Stilllegung emissionsintensiver Braunkohlenkraftwerke in den 1990er Jahren und dem Rückgang der Stromerzeugung aus Braun- und Steinkohle in den vergangenen Jahren. Der Anteil des erzeugten Stroms aus emissionsärmeren Kraftwerken etwa auf Basis erneuerbarer Energieträger oder Erdgas ist in den letzten Jahrzehnten deutlich gestiegen. Auch der Austausch der Kraftwerkstechnik in alten, weniger effizienten Kohlekraftwerken durch effizientere Technik mit einem höheren Wirkungsgrad trug zum Rückgang der CO 2 -Emissionen bei (siehe Abb. „Kohlendioxid-Emissionen der fossilen Stromerzeugung“). Der starke Ausbau der erneuerbaren Energien schlug sich zunächst nur eingeschränkt im Trend der CO 2 -Emissionen nieder, da die Erzeugung von Strom aus fossilen Energiequellen nicht im gleichen Maße zurückging, wie der Ausbau erfolgte. Seit dem Beschluss des Ausstiegs aus der Kernenergie im Jahr 2011 spielte Kernenergie eine immer geringere Rolle. Auch Steinkohle-Kraftwerke hatten als Mittellast-Kraftwerke und aufgrund relativ hoher Brennstoffkosten einen sinkenden Marktanteil. Gleichzeitig stieg die Stromerzeugung aus Erdgas deutlich an. Vor allem Braunkohle-Kraftwerke konnten verhältnismäßig preiswert Strom produzieren. Gleichzeitig wurde immer mehr erneuerbarer Strom erzeugt.  Dies führte zu einem bedeutenden Anstieg des Stromhandelssaldos. Durch den Rückgang an Kraftwerkskapazität auf Basis von Kohlen seit dem Jahr 2018 sanken die ⁠ Bruttostromerzeugung ⁠ und damit auch die Kohlendioxid-Emissionen der Stromerzeugung jedoch deutlich (Ausführlicher zur Struktur der Stromerzeugung siehe Artikel „ Erneuerbare und konventionelle Stromerzeugung “). Im Jahr 2020 gingen die CO 2 -Emissionen der Stromerzeugung besonders stark zurück durch die Auswirkungen der Corona-Pandemie. In den Jahren 2021 und 2022 stiegen die Emissionen wieder an und lagen zuletzt wieder auf dem niedrigen Niveau des Jahres 2019. Treibhausgas-Emissionen des deutschen Strommixes Die spezifischen Emissionen (Emissionsfaktoren) des Strommixes geben an, wie viel Treibhausgase und insbesondere CO 2 insgesamt pro Kilowattstunde Strom, die in Deutschland verbraucht wird, ausgestoßen werden. (siehe Abb. „Spezifische ⁠ Treibhausgas ⁠-Emissionen des deutschen Strommixes“). Der Emissionsfaktor für die Summe der Treibhausgasemissionen wird mit Vorketten ausgewiesen, der für CO 2 -Emissionen ohne. Das Umweltbundesamt veröffentlicht die entsprechenden Daten und die Methodik der Berechnung in der jährlich aktualisierten Publikation „ Entwicklung der spezifischen Treibhausgas-Emissionen des deutschen Strommix in den Jahren 1990 - 2022 “. Starker Rückgang weiterer „klassischer“ energiebedingter Luftschadstoffe Neben Treibhausgasen werden energiebedingt auch weitere Luftschadstoffe emittiert. Zu ihnen gehören Stickoxide (NO x ), Schwefeldioxid (SO 2 ), Flüchtige Organische Verbindungen (⁠ NMVOC ⁠), Ammoniak (NH 3 ) und Staub bzw. Feinstaub (⁠ PM10 ⁠). Während die energiebedingten ⁠ Treibhausgas ⁠-Emissionen seit 1990 nur leicht zurückgingen, wurden die „klassischen“ Luftschadstoffe – bis auf Ammoniak (NH 3 ) – stark vermindert (siehe Tab. „Energiebedingte Luftschadstoff-Emissionen“). Den größten Rückgang verzeichnet Schwefeldioxid (etwa 95 %). In der jüngsten Entwicklung hat sich der abnehmende Trend bei Luftschadstoffen deutlich abgeschwächt. Auswirkungen energiebedingter Emissionen Energiebedingte Emissionen beeinträchtigen die Umwelt in vielfältiger Weise. An erster Stelle ist die globale Erwärmung zu nennen. Werden fossile Brennstoffe gewonnen und verbrannt, so führt dies zu einer starken Freisetzung der Treibhausgase Kohlendioxid (CO 2 ) und Methan (CH 4 ), die wiederum hauptverantwortlich für den ⁠ Treibhauseffekt ⁠ sind. Weitere erhebliche Umweltbelastungen werden durch die „klassischen Luftschadstoffe“ verursacht. Die Folgen sind Luftverschmutzung durch Feinstaub (PM 10 , PM 2,5 ), Staub und Kohlenmonoxid (CO), ⁠ Versauerung ⁠, unter anderem durch Schwefeldioxid (SO 2 ), Stickstoffoxide (NO x ) und Ammoniak (NH 3 ). Außerdem entsteht durch Vorläufersubstanzen wie flüchtige organische Verbindungen (⁠ VOC ⁠) und Stickstoffoxide gesundheitsschädliches bodennahes Ozon (O 3 ).

Stoffeinträge aus der Atmosphäre in die Ostsee

Stoffeinträge aus der Atmosphäre in die Ostsee Die Ostsee wurde im Jahr 2020 deutlich weniger aus der Atmosphäre mit Cadmium, Benzo[a]pyren und Stickstoffverbindungen belastet als im Jahr 1990. Messungen an der UBA-Luftmessstelle Zingst Messungen an der ⁠ UBA ⁠-Luftmessstelle Zingst an der Ostseeküste zeigen einen Rückgang der nassen Depositionen der Schwermetalle Blei, Cadmium, Quecksilber seit Ende der 1990er Jahren (siehe Abb. „Nasse Depositionen von Quecksilber (Hg), Kobalt (Co), Cadmium (Cd), Arsen (As) und Chrom (Cr) an der UBA-Luftmessstelle Zingst“ und Abb. „Nasse Depositionen von Vanadium (V), Nickel (Ni), Blei (Pb) und Mangan (Mn) an der UBA-Luftmessstelle Zingst“). Als nasse ⁠ Deposition ⁠ werden die Stoffeinträge mit nassen Niederschlägen wie Regen und Schnee bezeichnet. Die Messungen an der UBA-Luftmessstelle Zingst zeigen auch einen Rückgang der nassen Depositionen der Organochlorpestizide g-Hexachlorcyclohexan und a-Hexachlorcyclohexan. Dort sank die nasse Deposition des Insektizids ⁠ Lindan ⁠ (g-Hexachlorcyclohexan) von 2000 bis 2020 um über 90 % (siehe Abb. „Nasse Depositionen ausgewählter POPs für die UBA-Luftmessstelle Zingst“), während bei den Depositionen der polyzyklischen Aromaten (⁠ PAK ⁠) Benzo[a]anthracen, Benzo[a]pyren, Dibenz[ah]anthracen und Indeno[1,2,3-cd]pyren eine Zunahme bzw. ein seitwärts Trend erkennbar ist. Dies ist im Einklang mit leicht ansteigenden ⁠ PAK ⁠-Emissionen in Deutschland im gleichen Zeitraum. Nasse Depositionen von Quecksilber, Kobalt, Cadmium, Arsen und Chrom an der Luftmessstelle Zingst Quelle: Luftmessnetz des Umweltbundesamtes Diagramm als PDF Nasse Depositionen von Vanadium, Nickel, Blei und Mangan an der Luftmessstelle Zingst Quelle: Luftmessnetz des Umweltbundesamtes Diagramm als PDF Nasse Depositionen ausgewählter POPs für die UBA-Luftmessstelle Zingst Quelle: Luftmessnetz des Umweltbundesamtes Diagramm als PDF Weniger Schadstoffe aus der Luft Modellrechnungen zur Abschätzung der Stoffeinträge aus der ⁠ Atmosphäre ⁠ in die Ostsee wurden im Rahmen von EMEP , dem Europäischen Beobachtungs- und Auswerteprogramm der Genfer Luftreinhaltekonvention der ⁠ UN ⁠/ECE, exemplarisch in 2022 für ausgewählte Stoffe durchgeführt. Die modellierten Depositionen für das Schwermetall Cadmium, für den polyzyklischen aromatischen Kohlenwasserstoff Benzo[a]pyren sowie für Stickstoff werden hier vorgestellt. Die Modellierung ergab, dass zwischen den Jahren 1990 und 2020 die Ablagerungen der untersuchten Schadstoffe aus der Luft besonders deutlich zurückgingen: Die jährliche ⁠ Deposition ⁠ von Benzo[a]pyren verringerte auf etwa 66 % der Deposition von 1990 (siehe Abb. „Entwicklung der Gesamtdepositionen von Benzo[a]pyren in die Ostsee“). Bei den Schwermetallen nahm die Deposition von Cadmium im Zeitraum 1990 – 2020 um etwa 79 % ab (siehe Abb. „Entwicklung der Gesamtdepositionen von Cadmium in die Ostsee“). Die Stickstoffeinträge aus der Atmosphäre in die Ostsee werden auch im Rahmen von HELCOM (Baltic Marine Environment Protection Commission), einer zwischenstaatlichen Kommission zum Schutz der Meeresumwelt im Ostseeraum untersucht und in regelmäßig erscheinenden Berichten veröffentlicht. Dabei zeigte sich eine Verringerung im Zeitraum 1990 bis 2021 um etwa 50 %. Dies war auf den Rückgang des Eintrags von Stickstoffverbindungen, die hauptsächlich durch Verbrennungsprozesse (z. B. Verkehr, Kraftwerke) in die Atmosphäre gelangten (oxidierter Stickstoff, N ox ) zurückzuführen (Rückgang von N ox um 56 %), während der Eintrag von Stickstoffverbindungen, die hauptsächlich aus der Landwirtschaft stammten (reduzierter Stickstoff, N red ) eine geringere Abnahme zeigte (siehe Abb. „Entwicklung der Gesamtdepositionen von Stickstoff in die Ostsee“). Entwicklung der Gesamtdepositionen von Benzo[a]pyren ... in die Ostsee Quelle: EMEP Diagramm als PDF Entwicklung der Gesamtdepositionen von Cadmium in die Ostsee Quelle: EMEP Diagramm als PDF Entwicklung der Gesamtdepositionen von Stickstoff in die Ostsee Quelle: EMEP Diagramm als PDF Messen und Modellieren zur Abschätzung der Stoffeinträge Abschätzungen der Stoffeinträge aus der ⁠ Atmosphäre ⁠ in die Ostsee stützen sich auf Messungen der ⁠ Deposition ⁠ ausgewählter Substanzen an Küstenstationen sowie auf Berechnungen mit speziellen atmosphärischen Chemie-Transportmodellen. Solche Modellierungen werden zum Beispiel im Rahmen von EMEP , also dem Europäischen Beobachtungs- und Auswerteprogramm der Genfer Luftreinhaltekonvention der ⁠ UN ⁠/ECE, durchgeführt. Für diesen Artikel wurden die Ergebnisse der EMEP-Modellrechnungen für den Zeitraum von 1990 bis 2020 bzw. 2021 verwendet. Datenquellen: UN/ECE EMEP, Ergebnisse der Modellierung ( https://www.emep.int/ ). Die Berechnungen wurden von den EMEP-Datenzentren ⁠ MSC ⁠-E und MSC-W mit Unterstützung der Meeresschutzkommission HELCOM ( https://helcom.fi/ ) durchgeführt. Cadmium EMEP MSC-E ( http://www.msc-east.org/ ), Stand: 07.11.2024; HELCOM ( https://emep.int/publ/helcom/2022/ ), Stand: 07.11.2024 BaP EMEP MSC-E ( http://www.msc-east.org/ ), Stand: 07.11.2024; HELCOM ( https://emep.int/publ/helcom/2022/ ), Stand: 07.11.2024 Stickstoff EMEP MSC-E ( http://www.msc-east.org/ ), Stand: 07.11.2024; HELCOM ( https://emep.int/publ/helcom/2023/ ), Stand: 07.11.2024

Stoffeinträge aus der Atmosphäre in die Nordsee

Stoffeinträge aus der Atmosphäre in die Nordsee Die Stoffeinträge aus der Atmosphäre in die Nordsee von Blei, Cadmium, Quecksilber und weiteren Schwermetallen sind seit den 1990ern rückläufig; ebenso wie Einträge von Stickstoffverbindungen und organischen Schadstoffen. Depositionsmessungen der UBA Messstelle Westerland tragen im Rahmen von EMEP dazu bei Stoffeinträge unterschiedlicher Schadstoffe im gesamten Bereich der Nordsee zu modellieren. Messungen an der UBA-Luftmessstelle Westerland Messungen an der ⁠ UBA ⁠-Luftmessstelle Westerland an der Nordseeküste zeigen einen Rückgang der nassen Depositionen der Schwermetalle Blei, Cadmium, Quecksilber (siehe Abb. „ Nasse Depositionen von Quecksilber (Hg), Kobalt (Co), Cadmium (Cd), Arsen (As) und Chrom (Cr) an der UBA-Luftmessstelle Westerland“ und Abb. „Nasse Depositionen von Vanadium (V), Nickel (Ni), Blei (Pb) und Mangan (Mn) an der UBA-Luftmessstelle Westerland“). Als nasse ⁠ Deposition ⁠ werden die Stoffeinträge mit nassen Niederschlägen wie Regen und Schnee bezeichnet. Die Messungen an der UBA-Luftmessstelle Westerland zeigen auch einen Rückgang der nassen Depositionen der Organochlorpestizide g-Hexachlorcyclohexan und a-Hexachlorcyclohexan. Dort sank die nasse Deposition des Insektizids ⁠ Lindan ⁠ (g-Hexachlorcyclohexan) von 2000 bis 2023 um mehr als 90% (siehe Abb. „Nasse Depositionen ausgewählter POPs für die UBA-Luftmessstelle Westerland“), während bei den Depositionen der polyzyklischen Aromaten (⁠ PAK ⁠) Benzo[a]anthracen, Benzo[a]pyren, Dibenz[ah]anthracen und Indeno[1,2,3-cd]pyren im gleichen Zeitraum teilweise schwankende Depositionen erkennbar sind. Nasse Depositionen von Quecksilber, Kobalt, Cadmium, Arsen und Chrom ... Luftmessstelle Westerland Quelle: Luftmessnetz des Umweltbundesamtes Diagramm als PDF Nasse Depositionen von Vanadium, Nickel, Blei und Mangan an der Luftmessstelle Westerland Quelle: Luftmessnetz des Umweltbundesamtes Diagramm als PDF Nasse Depositionen ausgewählter POPs für die UBA-Luftmessstelle Westerland Quelle: Luftmessnetz des Umweltbundesamtes Diagramm als PDF Weniger Schadstoffe aus der Luft Modellrechnungen zur Abschätzung der Stoffeinträge aus der ⁠ Atmosphäre ⁠ in die Nordsee wurden im Rahmen von EMEP , dem Europäischen Beobachtungs- und Auswerteprogramm der Genfer Luftreinhaltekonvention der ⁠ UN ⁠/ECE, exemplarisch für ausgewählte Stoffe durchgeführt. Diese Modellrechnungen wurden für den Quality Status Report der ⁠ OSPAR ⁠ Commission aufbereitet. Die modellierten Depositionen für drei Schwermetalle sowie für Stickstoff werden hier vorgestellt. Bei den Schwermetallen nahm die ⁠ Deposition ⁠ von Cadmium im Zeitraum 1990 – 2019 mit 83 % am stärksten ab. Auch die Einträge der Schwermetalle Quecksilber und Blei aus der Luft gingen zurück: die von Quecksilber um 44 % sowie die von Cadmium um 73 % (siehe Abb. „Entwicklung der Gesamtdepositionen von Blei, Cadmium und Quecksilber in die Nordsee“). Die Stickstoffeinträge aus der Atmosphäre verringerten sich im Zeitraum 1995 bis 2019 um etwa 39 %. Dies war auf den Rückgang des Eintrags von Stickstoffverbindungen, die hauptsächlich durch Verbrennungsprozesse (z. B. Verkehr, Kraftwerke) in die Atmosphäre gelangten (oxidierter Stickstoff, N ox ) zurückzuführen (Rückgang von N ox um ca. 49 %), während der Eintrag von Stickstoffverbindungen, die hauptsächlich aus der Landwirtschaft stammten (reduzierter Stickstoff, N red ) eine geringere Abnahme zeigte (siehe Abb. „Entwicklung der Gesamtdeposition von Stickstoff in die Nordsee“). Entwicklung der Gesamtdepositionen von Blei, Cadmium und Quecksilber in die Nordsee Quelle: EMEP Diagramm als PDF Entwicklung der Gesamtdepositionen von Stickstoff in die Nordsee Quelle: EMEP 6_abb_gesamtdepositionen-ns_2024-11-12.pdf Messen und Modellieren zur Abschätzung der Stoffeinträge Abschätzungen der Stoffeinträge aus der ⁠ Atmosphäre ⁠ in die Nordsee stützen sich auf Messungen der ⁠ Deposition ⁠ ausgewählter Substanzen an Küstenstationen sowie auf Berechnungen mit speziellen atmosphärischen Chemie-Transportmodellen. Solche Modellierungen werden zum Beispiel im Rahmen von EMEP , also dem Europäischen Beobachtungs- und Auswerteprogramm der Genfer Luftreinhaltekonvention der ⁠ UN ⁠/ECE, durchgeführt. Für diesen Artikel wurden die Ergebnisse der EMEP-Modellrechnungen für den Zeitraum 1990 bzw. 1995 bis 2019 verwendet. Datenquellen: UN/ECE EMEP, Ergebnisse der Modellierung ( https://www.emep.int /) ⁠ OSPAR ⁠ Quality Status Report 2023 ( https://www.ospar.org/work-areas/cross-cutting-issues/qsr2023 ) Schwermetalle EMEP, Ergebnisse der Modellierung ( http://www.emep.int/ ), EMEP ⁠ MSC ⁠-w ( https://www.emep.int/mscw/index.html# ), Stand: 21.03.2023; OSPAR, Inputs of Mercury, Cadmium and Lead via Water and Air to the OSPAR Maritime Area ( https://oap.ospar.org/en/ospar-assessments/quality-status-reports/qsr-2023/indicator-assessments/inputs-heavy-metals/ ), Stand: 21.03.2023 EMEP, Ergebnisse der Modellierung ( http://www.emep.int/ ), EMEP ⁠ MSC ⁠-w ( https://www.emep.int/mscw/index.html# ), Stand: 21.03.2023; OSPAR, Inputs of Mercury, Cadmium and Lead via Water and Air to the OSPAR Maritime Area ( https://oap.ospar.org/en/ospar-assessments/quality-status-reports/qsr-2023/indicator-assessments/inputs-heavy-metals/ ), Stand: 21.03.2023 Stickstoff EMEP, Ergebnisse der Modellierung ( http://www.emep.int/ ), EMEP MSC-w ( https://www.emep.int/mscw/index.html# ), Stand: 21.03.2023; EMEP MSC-W Report for OSPAR ( https://oap-cloudfront.ospar.org/media/filer_public/3f/f6/3ff69c1a-dde0-4898-b44e-165a8174c3c7/p00896_emep_w_qsr2023.pdf ), Stand: 21.03.2023.

Genehmigungsverfahren Firma ZRE GmbH

Die ZRE GmbH, Bullerdeich 19, 20537 Hamburg, hat am 28. Mai 2021, vervollständigt am 13. Dezember 2021, bei der zuständigen Behörde für Umwelt, Klima, Energie und Agrarwirtschaft, die Genehmigung für die Errichtung und den Betrieb einer Anlage zur Beseitigung oder Verwertung fester, flüssiger oder in Behältern gefasster gasförmiger Abfälle, Deponiegas oder anderer gasförmiger Stoffe mit brennbaren Bestandteilen durch thermische Verfahren, insbesondere Entgasung, Plasmaverfahren, Pyrolyse, Vergasung, Verbrennung oder eine Kombination dieser Verfahren mit einer Durchsatzkapazität von 3 Tonnen nicht gefährlichen Abfällen oder mehr je Stunde, auf dem Grundstück Schnackenburgallee 100, 22525 Hamburg, Gemarkung Ottensen, Flurstück 4231, beantragt. Die beantragte Genehmigung für die Errichtung und den Betrieb eines Zentrums für Ressourcen und Energie (ZRE) umfasst ein Abfallbehandlungszentrum zur Sortierung von Siedlungsabfällen mit nachgeschalteter thermischer Verwertung. Das ZRE besteht aus • einer Aufbereitungsanlage für Siedlungsabfälle (Hausmüllaufbereitungsanlage (HMA)) zur Ausschleusung von Wertstoffen, mit einer Kapazität von rund 32 Tonnen pro Stunde, • einer Altholzaufbereitung, mit einer Kapazität von rund 17 Tonnen pro Stunde und • einer Abfallverbrennungsanlage, bestehend aus zwei Verbrennungslinien zur thermischen Verwertung von nicht gefährlichem Abfall in einem - Niederkalorik-Kessel mit einer Feuerungswärmeleistung von 47 MW (Linie 1) und einem - Hochkalorik-Kessel mit einer Feuerungswärmeleistung von 73 MW (Linie 2) mit einer Gesamtdurchsatzkapazität von 323.000 Tonnen pro Jahr. Darüber hinaus sind ein Energiesystem mit zwei Dampfturbinen und Luftkondensatoren, eine Fernwärmeübergabestation, zwei Netztransformatoren und ein Heizöl-betriebenes Notstromaggregat mit einer Feuerungswärmeleistung von 6,7 MW Bestandteil des Vorhabens. Es ist vorgesehen die Anlage im Dezember 2025 in Betrieb zu nehmen. Das Vorhaben bedarf einer Genehmigung nach § 4 BImSchG in Verbindung mit Nr. 8.1.1.3 (Anlagen zur Beseitigung oder Verwertung fester, flüssiger oder in Behältern gefasster gasförmiger Abfälle, Deponiegas oder anderer gasförmiger Stoffe mit brennbaren Bestandteilen durch thermische Verfahren, insbesondere Entgasung, Plasmaverfahren, Pyrolyse, Vergasung, Verbrennung oder eine Kombination dieser Verfahren mit einer Durchsatzkapazität von 3 Tonnen nicht gefährlichen Abfällen oder mehr je Stunde), Verfahrensart G, des Anhangs 1 zur vierten Verordnung zur Durchführung des BImSchG (4. BImSchV). Es handelt sich um eine Anlage gemäß Artikel 10 der RL 2010/75/EU. Neben der Genehmigung nach BImSchG werden von der ZRE GmbH weitere Genehmigungen nach § 11a Hamburgisches Abwassergesetz (HmbAbwG) beantragt. Diese sind: - Einleitung von Niederschlagswasser von Dach- und Verkehrsflächen in öffentliche Abwasseranlagen - Einleitung von Baugrubenwasser in öffentliche Abwasseranlagen während der Errichtungsphase des ZRE Die beantragten Einleitungen von Abwasser in öffentliche Abwasseranlagen bedürfen der Genehmigung nach § 11a HmbAbwG. Da die Einleitungen des Abwassers im Zusammenhang mit der Errichtung und dem Betrieb des Zentrums für Ressourcen und Energie stehen, sind die Genehmigungsverfahren gemäß § 11b Abs. 2 HmbAbwG nach den Vorschriften des § 10 BImSchG durchzuführen. Darüber hinaus sind zu den hier bekannt gegebenen Genehmigungsverfahren nach BImSchG und HmbAbwG weitere Entscheidungen nach § 8 des Gesetzes zur Ordnung des Wasserhaushalts (WHG) erforderlich, welche gesondert beantragt werden. Diese sind: - Entnahme von Grundwasser - Entnahme von Baugrubenwasser Gemäß § 6 i. V. m. Anlage 1 Nr. 8.1.1.2 Gesetz über die Umweltverträglichkeitsprüfung (UVPG) ist für das Vorhaben eine Umweltverträglichkeitsprüfung durchzuführen. Darüber hinaus wurden zusätzlich zu den Genehmigungsverfahren nach BImSchG und HmbAbwG auch folgend aufgeführte Grundwassernutzungen nach §8 des Gesetzes zur Ordnung des Wasserhaushalts (WHG) beantragt. Die beantragten Wasserrechtlichen Genehmigungen für die Errichtung und den Betrieb eines Zentrums für Ressourcen und Energie (ZRE) umfassen: Grundwasserförderung mit einer jährlichen Entnahmemenge von 100.000 m³: Durch den geplanten Betrieb des Zentrums für Ressourcen und Energie wird die ZRE GmbH nach Fertigstellung der Anlage die Hauptnutzerin des bereits vorhandenen Förderbrunnens mit der Brunnen-Nr. 41548 sein. Mit den eingereichten Antragsunterlagen zur Grundwasserentnahme gemäß § 8 WHG beantragt die ZRE GmbH den Weiterbetrieb dieses Brunnens für einen Zeitraum von 10 Jahren ab dem 01.01.2025 sowie eine Erhöhung der jährlichen Fördermenge von derzeit genehmigten 90.000 m³ pro Jahr auf 100.000 m³ pro Jahr. Bauzeitliche Wasserhaltung: Der Reststoffbunker und die Fernwärmeübergabestation werden gründungsseitig bis ca. 8,0m (Bunkerneubau) bzw. bis ca. 12,2m (FWÜS) in die wasserführenden Bodenschichten einbinden, so dass bei den Baumaßnahmen eine Wasserhaltung erforderlich ist. Geplant ist die Ausführung von Trogbauwerken mit Betondichtsohlen. Die Baugrubenumschließungen werden als überschnittene Bohrpfahlwände errichtet, alternativ werden Schlitzwände erstellt. Die Dichtsohlen werden als Unterwasserbetonsohlen mit Auftriebsankern ausgeführt. Die Grundwasserentnahme ist zeitlich auf die Bauphase (FWÜS: ca. 10 Monate, Bunker ca. 8 Monate) begrenzt. Es wurde beantragt insgesamt rund 58.000m³ Leckage-/Lenzwasser zu entnehmen. Es ist vorgesehen, die Wasserhaltung im Dezember 2025 in Betrieb zu nehmen. Gleichzeitig mit dem Antrag auf wasserrechtliche Erlaubnis zur bauzeitlichen Grundwasserentnahme gem. §8 WHG hat die Antragstellerin die Zulassung des vorzeitigen Beginns gem. §17 WHG beantragt. Da sich die Konzentrationswirkungen des § 13 BImSchG nicht auf wasserrechtliche Erlaubnisse und Befugnisse nach den Vorschriften des WHG erstrecken, besteht für die geplanten Grundwassernutzungen im Rahmen des geplanten Vorhabens eine Pflicht zur Durchführung einer UVP.

1 2 3 4 5257 258 259