API src

Found 78 results.

Do it yourself solar house

Das Projekt "Do it yourself solar house" wird vom Umweltbundesamt gefördert und von Garbersbau, Hermann Garbers GmbH & Co. durchgeführt. Objective: Aim of the project was to demonstrate the marketability of our 'Do-it-yourself-solar-house'. By this, the gap between our developments and their application should be closed. The specific innovation of the project is, that our Do-it-yourself-conception bases on a construction manual for building (solar) houses which is very detailed but nevertheless also understandable for non-professionals. In addition, we can and do supply full technical support to the client, e.g. concerning safety standards etc., because all construction sites are located near. The market studies which have been carried out, show that in the FRG the market share of Do-it-yourself-houses (one-and-two-family-houses) is about 51,9 per cent. For the first time, our project will introduce to his large market the possibility of building a solar house by a Do-it-yourself technique. General Information: The purpose of this project was to close the gap between the developments of the do-it-yourself-solar houses we (Solar Module) have carried out so far and their application and establishment on the market. Before carrying out the necessary data for the assessment of technical and commercial feasibility of this plan. Compared to conventional buildings this do-it-yourself concept will save costs and, therefore, this concept will contribute to establish (on larger scale) the environment protecting passive solar energy on the market. By the application of passive technology, five detached family houses are heated by solar energy. Conventional energy will be replaced and resources of raw materials will be saved. The houses were built in normal sizes. All five houses are equipped with a conventional heating system (gas). The floor area of the solar houses is about 12 m2. Three of five solar houses are facing South, two facing West. The provided locations for these buildings are two different districts in the region of Lüneburg. Achievements: The clients decided in favour of a do-it-yourself detached family house mainly for financial reasons. They all belong to the financially weak. For them building a do-it-yourself solar house meant increasing the value of their home and possibly saving energy. The solar houses are used mostly as an extension of the living room. In all cases the warm air of the solar house was used for heating the living-room. The solar houses facing South had some problems with overheating during summer time. Some occupants regret that their solar house is too small. Three of five occupants think that the solar house needs too much attention e.g. cleaning the glass. Thermal reaction of the building on cloudy winter days: an effect of diffuse sunlight can be observed in the houses with Solar Modules facing South. Otherwise, there is no influence on the room-temperature. Thermal reaction of the building on sunny winter days: greatest influence of solar radiation is to be seen in the Solar Module facing South e.g. it made the temperature of the Solar Module...

Teil 5

Das Projekt "Teil 5" wird vom Umweltbundesamt gefördert und von Universität Tübingen, Institut und Museum für Geologie und Paläontologie durchgeführt. Die in Baden-Württemberg beheimateten Hochschulen, Forschungseinrichtungen und Partner im Landesforschungszentrum Geothermie (LFZG) haben sich im Rahmen dieses Verbundvorhabens zusammengeschlossen, um Beiträge zur Sicherstellung der Nachhaltigkeit der Nutzung von Erdwärmesonden zu leisten. Das Vorhaben war in sieben Arbeitspakete (AP) mit den folgenden Zielen gegliedert: AP 1: Mobiler Sonden- und Hinterfüllprüfstand. Es soll die Möglichkeit geschaffen werden, die Qualität und Langzeitstabilität einer Erdwärmesonde direkt bei der Installation nachhaltig überprüfen zu können. AP 2: Integrative und detaillierte messtechnische Erfassung und Auswertung von Erdsondenprüfmethoden. Standardisierung, Automatisierung und Weiterentwicklung von integrativen Mess- und Auswertemethoden zur hoch- genauen Bestimmung der thermischen Effizienz von Erdwärmesonden. AP 3: Geophysikalische Messmethoden (Faseroptik). Integration faseroptischer Messmöglichkeiten in den in AP 1 geplanten mobilen Sonden- und Hinterfüllprüfstand. AP 4: Anwendung und Adaption von an Erdwärmesonden in situ gemessenen Parametern in Auslegungsberechnungen sowie zugehörigen Berechnungs- und Simulationsprogrammen. AP 5: Definition des Nahbereichs von Erdwärmesonden. Gewinnung detaillierter Kenntnisse über den Temperaturverlauf bzw. die Wärmeausbreitung im Nahbereich von Erdwärmesonden sowie deren Wechselwirkung mit dem Aquifer. AP 6: Geothermisches Wärme- und Kälte-Speicherpotential im urbanen Untergrund. Erfassung der relevanten Parameter, um den urbanen Wärmestrom zu ermitteln und das nachhaltige geothermische Wärme- und Kälte-Speicherpotentials in urbanen Grundwasserleitern zu bestimmen. AP 7: Gekoppelt thermisch-mechanische Simulation von Erdwärmesonden. Es soll ein vertieftes Verständnis der thermisch-mechanischen Auswirkungen des Verpressvorgangs des Ringraumes von Erdwärmesonden geschaffen werden. Ein über die einzelnen Teilprojekte/Arbeitspakete hinausgehendes Ziel war, dass die Arbeit im Verbundvorhaben die unterschiedlichen Forschungseinrichtungen und Hochschulen des Landes Baden-Württemberg besser vernetzt und die Forschung regional gestärkt wird. Zudem fokussierten die Arbeiten auf die beiden zentralen Aspekte der Nachhaltigkeit bei Nutzung von Erdwärmesonden als oberflächennahes geothermisches Quellensysteme für Wärme und Kälte: 1) Prüfung, Nachweis und langfristige Sicherstellung der erforderlichen Einbauqualität (v. a. Dichtheit) und 2) verbesserte Ermittlung des thermisch-energetischen Verhaltens (Auslegung und thermische Auswirkungen auf die Umgebung).

Teil 7

Das Projekt "Teil 7" wird vom Umweltbundesamt gefördert und von Universität Stuttgart, Institut für Wasser- und Umweltsystemmodellierung durchgeführt. Die in Baden-Württemberg beheimateten Hochschulen, Forschungseinrichtungen und Partner im Landesforschungszentrum Geothermie (LFZG) haben sich im Rahmen dieses Verbundvorhabens zusammengeschlossen, um Beiträge zur Sicherstellung der Nachhaltigkeit der Nutzung von Erdwärmesonden zu leisten. Das Vorhaben war in sieben Arbeitspakete (AP) mit den folgenden Zielen gegliedert: AP 1: Mobiler Sonden- und Hinterfüllprüfstand. Es soll die Möglichkeit geschaffen werden, die Qualität und Langzeitstabilität einer Erdwärmesonde direkt bei der Installation nachhaltig überprüfen zu können. AP 2: Integrative und detaillierte messtechnische Erfassung und Auswertung von Erdsondenprüfmethoden. Standardisierung, Automatisierung und Weiterentwicklung von integrativen Mess- und Auswertemethoden zur hoch- genauen Bestimmung der thermischen Effizienz von Erdwärmesonden. AP 3: Geophysikalische Messmethoden (Faseroptik). Integration faseroptischer Messmöglichkeiten in den in AP 1 geplanten mobilen Sonden- und Hinterfüllprüfstand. AP 4: Anwendung und Adaption von an Erdwärmesonden in situ gemessenen Parametern in Auslegungsberechnungen sowie zugehörigen Berechnungs- und Simulationsprogrammen. AP 5: Definition des Nahbereichs von Erdwärmesonden. Gewinnung detaillierter Kenntnisse über den Temperaturverlauf bzw. die Wärmeausbreitung im Nahbereich von Erdwärmesonden sowie deren Wechselwirkung mit dem Aquifer. AP 6: Geothermisches Wärme- und Kälte-Speicherpotential im urbanen Untergrund. Erfassung der relevanten Parameter, um den urbanen Wärmestrom zu ermitteln und das nachhaltige geothermische Wärme- und Kälte-Speicherpotentials in urbanen Grundwasserleitern zu bestimmen. AP 7: Gekoppelt thermisch-mechanische Simulation von Erdwärmesonden. Es soll ein vertieftes Verständnis der thermisch-mechanischen Auswirkungen des Verpressvorgangs des Ringraumes von Erdwärmesonden geschaffen werden. Ein über die einzelnen Teilprojekte/Arbeitspakete hinausgehendes Ziel war, dass die Arbeit im Verbundvorhaben die unterschiedlichen Forschungseinrichtungen und Hochschulen des Landes Baden-Württemberg besser vernetzt und die Forschung regional gestärkt wird. Zudem fokussierten die Arbeiten auf die beiden zentralen Aspekte der Nachhaltigkeit bei Nutzung von Erdwärmesonden als oberflächennahes geothermisches Quellensysteme für Wärme und Kälte: 1) Prüfung, Nachweis und langfristige Sicherstellung der erforderlichen Einbauqualität (v. a. Dichtheit) und 2) verbesserte Ermittlung des thermisch-energetischen Verhaltens (Auslegung und thermische Auswirkungen auf die Umgebung).

Teil 3

Das Projekt "Teil 3" wird vom Umweltbundesamt gefördert und von Karlsruher Institut für Technologie (KIT), Institut für Angewandte Geowissenschaften, Abteilung Ingenieurgeologie durchgeführt. Die in Baden-Württemberg beheimateten Hochschulen, Forschungseinrichtungen und Partner im Landesforschungszentrum Geothermie (LFZG) haben sich im Rahmen dieses Verbundvorhabens zusammengeschlossen, um Beiträge zur Sicherstellung der Nachhaltigkeit der Nutzung von Erdwärmesonden zu leisten. Das Vorhaben war in sieben Arbeitspakete (AP) mit den folgenden Zielen gegliedert: AP 1: Mobiler Sonden- und Hinterfüllprüfstand. Es soll die Möglichkeit geschaffen werden, die Qualität und Langzeitstabilität einer Erdwärmesonde direkt bei der Installation nachhaltig überprüfen zu können. AP 2: Integrative und detaillierte messtechnische Erfassung und Auswertung von Erdsondenprüfmethoden. Standardisierung, Automatisierung und Weiterentwicklung von integrativen Mess- und Auswertemethoden zur hoch- genauen Bestimmung der thermischen Effizienz von Erdwärmesonden. AP 3: Geophysikalische Messmethoden (Faseroptik). Integration faseroptischer Messmöglichkeiten in den in AP 1 geplanten mobilen Sonden- und Hinterfüllprüfstand. AP 4: Anwendung und Adaption von an Erdwärmesonden in situ gemessenen Parametern in Auslegungsberechnungen sowie zugehörigen Berechnungs- und Simulationsprogrammen. AP 5: Definition des Nahbereichs von Erdwärmesonden. Gewinnung detaillierter Kenntnisse über den Temperaturverlauf bzw. die Wärmeausbreitung im Nahbereich von Erdwärmesonden sowie deren Wechselwirkung mit dem Aquifer. AP 6: Geothermisches Wärme- und Kälte-Speicherpotential im urbanen Untergrund. Erfassung der relevanten Parameter, um den urbanen Wärmestrom zu ermitteln und das nachhaltige geothermische Wärme- und Kälte-Speicherpotentials in urbanen Grundwasserleitern zu bestimmen. AP 7: Gekoppelt thermisch-mechanische Simulation von Erdwärmesonden. Es soll ein vertieftes Verständnis der thermisch-mechanischen Auswirkungen des Verpressvorgangs des Ringraumes von Erdwärmesonden geschaffen werden. Ein über die einzelnen Teilprojekte/Arbeitspakete hinausgehendes Ziel war, dass die Arbeit im Verbundvorhaben die unterschiedlichen Forschungseinrichtungen und Hochschulen des Landes Baden-Württemberg besser vernetzt und die Forschung regional gestärkt wird. Zudem fokussierten die Arbeiten auf die beiden zentralen Aspekte der Nachhaltigkeit bei Nutzung von Erdwärmesonden als oberflächennahes geothermisches Quellensysteme für Wärme und Kälte: 1) Prüfung, Nachweis und langfristige Sicherstellung der erforderlichen Einbauqualität (v. a. Dichtheit) und 2) verbesserte Ermittlung des thermisch-energetischen Verhaltens (Auslegung und thermische Auswirkungen auf die Umgebung).

Teil 6

Das Projekt "Teil 6" wird vom Umweltbundesamt gefördert und von Steinbeis Innovation gGmbH, Solites - Forschungsinstitut für solare und zukunftsfähige thermische Energiesysteme durchgeführt. Die in Baden-Württemberg beheimateten Hochschulen, Forschungseinrichtungen und Partner im Landesforschungszentrum Geothermie (LFZG) haben sich im Rahmen dieses Verbundvorhabens zusammengeschlossen, um Beiträge zur Sicherstellung der Nachhaltigkeit der Nutzung von Erdwärmesonden zu leisten. Das Vorhaben war in sieben Arbeitspakete (AP) mit den folgenden Zielen gegliedert: AP 1: Mobiler Sonden- und Hinterfüllprüfstand. Es soll die Möglichkeit geschaffen werden, die Qualität und Langzeitstabilität einer Erdwärmesonde direkt bei der Installation nachhaltig überprüfen zu können. AP 2: Integrative und detaillierte messtechnische Erfassung und Auswertung von Erdsondenprüfmethoden. Standardisierung, Automatisierung und Weiterentwicklung von integrativen Mess- und Auswertemethoden zur hoch- genauen Bestimmung der thermischen Effizienz von Erdwärmesonden. AP 3: Geophysikalische Messmethoden (Faseroptik). Integration faseroptischer Messmöglichkeiten in den in AP 1 geplanten mobilen Sonden- und Hinterfüllprüfstand. AP 4: Anwendung und Adaption von an Erdwärmesonden in situ gemessenen Parametern in Auslegungsberechnungen sowie zugehörigen Berechnungs- und Simulationsprogrammen. AP 5: Definition des Nahbereichs von Erdwärmesonden. Gewinnung detaillierter Kenntnisse über den Temperaturverlauf bzw. die Wärmeausbreitung im Nahbereich von Erdwärmesonden sowie deren Wechselwirkung mit dem Aquifer. AP 6: Geothermisches Wärme- und Kälte-Speicherpotential im urbanen Untergrund. Erfassung der relevanten Parameter, um den urbanen Wärmestrom zu ermitteln und das nachhaltige geothermische Wärme- und Kälte-Speicherpotentials in urbanen Grundwasserleitern zu bestimmen. AP 7: Gekoppelt thermisch-mechanische Simulation von Erdwärmesonden. Es soll ein vertieftes Verständnis der thermisch-mechanischen Auswirkungen des Verpressvorgangs des Ringraumes von Erdwärmesonden geschaffen werden. Ein über die einzelnen Teilprojekte/Arbeitspakete hinausgehendes Ziel war, dass die Arbeit im Verbundvorhaben die unterschiedlichen Forschungseinrichtungen und Hochschulen des Landes Baden-Württemberg besser vernetzt und die Forschung regional gestärkt wird. Zudem fokussierten die Arbeiten auf die beiden zentralen Aspekte der Nachhaltigkeit bei Nutzung von Erdwärmesonden als oberflächennahes geothermisches Quellensysteme für Wärme und Kälte: 1) Prüfung, Nachweis und langfristige Sicherstellung der erforderlichen Einbauqualität (v. a. Dichtheit) und 2) verbesserte Ermittlung des thermisch-energetischen Verhaltens (Auslegung und thermische Auswirkungen auf die Umgebung).

Teil 4

Das Projekt "Teil 4" wird vom Umweltbundesamt gefördert und von Universität Stuttgart, Institut für Geotechnik durchgeführt. Die in Baden-Württemberg beheimateten Hochschulen, Forschungseinrichtungen und Partner im Landesforschungszentrum Geothermie (LFZG) haben sich im Rahmen dieses Verbundvorhabens zusammengeschlossen, um Beiträge zur Sicherstellung der Nachhaltigkeit der Nutzung von Erdwärmesonden zu leisten. Das Vorhaben war in sieben Arbeitspakete (AP) mit den folgenden Zielen gegliedert: AP 1: Mobiler Sonden- und Hinterfüllprüfstand. Es soll die Möglichkeit geschaffen werden, die Qualität und Langzeitstabilität einer Erdwärmesonde direkt bei der Installation nachhaltig überprüfen zu können. AP 2: Integrative und detaillierte messtechnische Erfassung und Auswertung von Erdsondenprüfmethoden. Standardisierung, Automatisierung und Weiterentwicklung von integrativen Mess- und Auswertemethoden zur hoch- genauen Bestimmung der thermischen Effizienz von Erdwärmesonden. AP 3: Geophysikalische Messmethoden (Faseroptik). Integration faseroptischer Messmöglichkeiten in den in AP 1 geplanten mobilen Sonden- und Hinterfüllprüfstand. AP 4: Anwendung und Adaption von an Erdwärmesonden in situ gemessenen Parametern in Auslegungsberechnungen sowie zugehörigen Berechnungs- und Simulationsprogrammen. AP 5: Definition des Nahbereichs von Erdwärmesonden. Gewinnung detaillierter Kenntnisse über den Temperaturverlauf bzw. die Wärmeausbreitung im Nahbereich von Erdwärmesonden sowie deren Wechselwirkung mit dem Aquifer. AP 6: Geothermisches Wärme- und Kälte-Speicherpotential im urbanen Untergrund. Erfassung der relevanten Parameter, um den urbanen Wärmestrom zu ermitteln und das nachhaltige geothermische Wärme- und Kälte-Speicherpotentials in urbanen Grundwasserleitern zu bestimmen. AP 7: Gekoppelt thermisch-mechanische Simulation von Erdwärmesonden. Es soll ein vertieftes Verständnis der thermisch-mechanischen Auswirkungen des Verpressvorgangs des Ringraumes von Erdwärmesonden geschaffen werden. Ein über die einzelnen Teilprojekte/Arbeitspakete hinausgehendes Ziel war, dass die Arbeit im Verbundvorhaben die unterschiedlichen Forschungseinrichtungen und Hochschulen des Landes Baden-Württemberg besser vernetzt und die Forschung regional gestärkt wird. Zudem fokussierten die Arbeiten auf die beiden zentralen Aspekte der Nachhaltigkeit bei Nutzung von Erdwärmesonden als oberflächennahes geothermisches Quellensysteme für Wärme und Kälte: 1) Prüfung, Nachweis und langfristige Sicherstellung der erforderlichen Einbauqualität (v. a. Dichtheit) und 2) verbesserte Ermittlung des thermisch-energetischen Verhaltens (Auslegung und thermische Auswirkungen auf die Umgebung).

Teil 2

Das Projekt "Teil 2" wird vom Umweltbundesamt gefördert und von Karlsruher Institut für Technologie (KIT), European Institute for Energy Research EIfER durchgeführt. Die in Baden-Württemberg beheimateten Hochschulen, Forschungseinrichtungen und Partner im Landesforschungszentrum Geothermie (LFZG) haben sich im Rahmen dieses Verbundvorhabens zusammengeschlossen, um Beiträge zur Sicherstellung der Nachhaltigkeit der Nutzung von Erdwärmesonden zu leisten. Das Vorhaben war in sieben Arbeitspakete (AP) mit den folgenden Zielen gegliedert: AP 1: Mobiler Sonden- und Hinterfüllprüfstand. Es soll die Möglichkeit geschaffen werden, die Qualität und Langzeitstabilität einer Erdwärmesonde direkt bei der Installation nachhaltig überprüfen zu können. AP 2: Integrative und detaillierte messtechnische Erfassung und Auswertung von Erdsondenprüfmethoden. Standardisierung, Automatisierung und Weiterentwicklung von integrativen Mess- und Auswertemethoden zur hoch- genauen Bestimmung der thermischen Effizienz von Erdwärmesonden. AP 3: Geophysikalische Messmethoden (Faseroptik). Integration faseroptischer Messmöglichkeiten in den in AP 1 geplanten mobilen Sonden- und Hinterfüllprüfstand. AP 4: Anwendung und Adaption von an Erdwärmesonden in situ gemessenen Parametern in Auslegungsberechnungen sowie zugehörigen Berechnungs- und Simulationsprogrammen. AP 5: Definition des Nahbereichs von Erdwärmesonden. Gewinnung detaillierter Kenntnisse über den Temperaturverlauf bzw. die Wärmeausbreitung im Nahbereich von Erdwärmesonden sowie deren Wechselwirkung mit dem Aquifer. AP 6: Geothermisches Wärme- und Kälte-Speicherpotential im urbanen Untergrund. Erfassung der relevanten Parameter, um den urbanen Wärmestrom zu ermitteln und das nachhaltige geothermische Wärme- und Kälte-Speicherpotentials in urbanen Grundwasserleitern zu bestimmen. AP 7: Gekoppelt thermisch-mechanische Simulation von Erdwärmesonden. Es soll ein vertieftes Verständnis der thermisch-mechanischen Auswirkungen des Verpressvorgangs des Ringraumes von Erdwärmesonden geschaffen werden. Ein über die einzelnen Teilprojekte/Arbeitspakete hinausgehendes Ziel war, dass die Arbeit im Verbundvorhaben die unterschiedlichen Forschungseinrichtungen und Hochschulen des Landes Baden-Württemberg besser vernetzt und die Forschung regional gestärkt wird. Zudem fokussierten die Arbeiten auf die beiden zentralen Aspekte der Nachhaltigkeit bei Nutzung von Erdwärmesonden als oberflächennahes geothermisches Quellensysteme für Wärme und Kälte: 1) Prüfung, Nachweis und langfristige Sicherstellung der erforderlichen Einbauqualität (v. a. Dichtheit) und 2) verbesserte Ermittlung des thermisch-energetischen Verhaltens (Auslegung und thermische Auswirkungen auf die Umgebung).

Der Einfluss von Modellfehlern auf ENSO Projektionen für das 21. Jahrhundert

Das Projekt "Der Einfluss von Modellfehlern auf ENSO Projektionen für das 21. Jahrhundert" wird vom Umweltbundesamt gefördert und von Deutsche Forschungsgemeinschaft durchgeführt. El Niño/Southern Oscillation (ENSO) ist die dominate Mode der Klimavariabilität des gekoppelten Ozean-Atmosphäre-Systems im tropischen Pazifik und ergibt sich aus einem komplexen Zusammenspiel zwischen verstärkenden und dämpfenden Feedbacks. Angesichts seiner großen sozioökonomischen Auswirkungen ist es sehr wichtig genau vorherzusagen, wie sich ENSO unter der globalen Erwärmung verändern wird. Obwohl in den letzten Jahrzehnten Verbesserungen bei der Simulation von ENSO erreicht wurden, bleibt eine realistische Darstellung von ENSO und seiner Projektion unter der globalen Erwärmung eine Herausforderung. Die Projektionen von ENSO unterscheiden sich stark zwischen den Klimamodellen, die an den Phasen 3 und 5 des Coupled Model Intercomparison Project (CMIP3 und CMIP5) teilnehmen. Obwohl diese Modelle ENSO simulieren, der in einfachen Indizes mit Beobachtungen übereinstimmt, unterscheidet sich die zugrunde liegende Dynamik stark von der beobachteten. In Beobachtungen wächst eine anfängliche SST-Anomalie während ENSO-Ereignissen durch windinduzierte Änderungen der Ozeandynamik. Dieser Tendenz wirkt ein dämpfendes Feedback der atmosphärischen Wärmeflüsse entgegen, insbesondere durch die Sonneneinstrahlung (SW) und latenten Wärmeflüsse. In den meisten Klimamodellen ist jedoch das Wind-SST-Feedback zu schwach und das SW-SST-Feedback fehlerhaft positiv, so dass ENSO ein Hybrid aus Wind-getriebener und SW-getriebener Dynamik ist. In den Modellen mit dem größten Fehler trägt der SW-SST-Feedback zum Wachstum der SST-Anomalie in ähnlichem Maße wie das Wind-SST-Feedback bei. In den Klimamodellen existiert ein breites Spektrum an ENSO-Dynamiken, das die große Streuung der ENSO-Projektionen für das 21. Jahrhunderts erklären könnte.Im IMBE21C-Projekt untersuchen wir die Auswirkungen der Modellfehler auf die ENSO-Projektionen. Mit einer neuen Methode, der „Offline Slab Ocean SST“, können wir die Rolle der verstärkenden und dämpfenden Feedbacks quantifizieren. Dafür separieren wir die SST-Änderungen der Wind-getriebenen Meeresdynamik von der durch atmosphärische Wärmeflüsse verursacht werden. In diesem Projekt werden wir diese Methode verwenden, um den Antrieb und die Dämpfung in der beobachteten ENSO-Dynamik zu quantifizieren und mit dem in Klimamodellen simulierten ENSO zu vergleichen, um die Fehler in der simulierten ENSO-Dynamik zu identifizieren und zu quantifizieren. Des Weiteren werden wir den Einfluss der fehlerhaften ENSO-Dynamik auf die Projektionen von ENSO im Klimawandel analysieren, indem wir die Modelle in Gruppen mit realistischer und fehlerhafter ENSO-Dynamik unterteilen. Darüber hinaus werden wir die Gesamtunsicherheit der projizierten ENSO-Amplitudenänderung in Modellunsicherheit, Szenariounsicherheit und Unsicherheit aufgrund interner Variabilität aufteilen. Insgesamt zielt das IMBE21C Projekt darauf ab, durch innovative Methoden die Quellen von Unsicherheiten in ENSO-Projektionen zu identifizieren und diese zu reduzieren.

Modellversuch - Kuehlturm KK Hamm

Das Projekt "Modellversuch - Kuehlturm KK Hamm" wird vom Umweltbundesamt gefördert und von Universität Karlsruhe (TH), Institut für Hydromechanik durchgeführt. Planung und Gestaltung der Bypasse fuer Warmwassereinleitung mit dem Ziel der Eisfreihaltung, guter Durchmischung und Vermeidung eines hydraulischen Kurzschlusses.

Solar houses 'Hameln Emmerthal'

Das Projekt "Solar houses 'Hameln Emmerthal'" wird vom Umweltbundesamt gefördert und von Institut für Solarenergieforschung GmbH durchgeführt. Objective: Energy saving measures in buildings are of great economical and ecological importance: about 43 per cent of the end energy consumption of the Federal Republic of Germany are allotted to space heating. Improved heat insulation combined with optimized heating and control techniques may reduce the heating energy demand, but remaining heat transmissions and in particular ventilation losses cannot be avoided completely. A further reduction of the energy requirement calls for new concepts. In this context passive solar measures are of great importance, because they are able to compensate heat losses by solar gains. The ISFH has built two experimental houses to demonstrate buildings with minimized heating loads and for testing the effectiveness and the economy of passive solar components and systems. General Information: The site is situated in the municipality of Emmerthal south of the city of Hameln. Particular characteristics of the buildings are: large south facing windows for direct gains, transparently insulated solar walls, a conservatory as preheater for ventilation air, opaque insulation better than the Swedish standard, advanced glazing, temperature zoning, a standard gas central heating system with low capacity radiators and a computerized energy management to ensure maximum use of solar gains. The performance of the passive solar design is continuously monitored, including climatic data. A basic idea of the project is to use one house as the experimental one and the other as a reference. Both houses are nearly identical, except for the solar components under investigation. Test-reference experiments can be carried out that way, which allow a direct assessment of the solar gains. Achievements: The specific heat consumption of the reference house is 55 kWh/m2. The specific heat consumption of the solar test house is 40 kWh/m2. Thus, the already low heating energy needs of the buildings (low energy building standard) could be diminished by 25 per cent through solar measures.

1 2 3 4 5 6 7 8