API src

Found 11 results.

Aging of engineered inorganic nanoparticles in surface waters

Das Projekt "Aging of engineered inorganic nanoparticles in surface waters" wird vom Umweltbundesamt gefördert und von Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Institut für Umweltwissenschaften durchgeführt. When released into surface waters, engineered inorganic nanoparticles (EINP) can be subject to multiple transformations. The objectives of MASK are to understand under which conditions EINP in aquatic systems will attach to suspended matter, under which conditions and in which time scale EINP are coated by NOM present in freshwater systems, how these coated colloidal particles are stabilized in the aquatic system and to which extent the aquatic aging processes are reversible. Homo-aggregation, coating changes, biological interactions and hetero-aggregation are hypothesized as key processes governing EINP aging in water bodies. In process orientated laboratory incubation experiments (50 ml to 6 l) with increasing complexity, MASK unravels the relevance and the interplay of inorganic colloids, aquagenic and pedogenic organic matter and solution physicochemistry for stability of EINP. These systems will successively approach situations in real waters. MASK thus provides information on EINP fluxes in the aquatic compartment, their time scales, reversibility and relative relevance. EINP will be analysed by standard light scattering techniques, ICP-MS, ESEM/EDX, WetSTEM and AFM. A method coupling hydrodynamic radius chromatography (HDC) with ICPMS recently developed by K. Tiede for nAg0 will be optimized and developed for further EINP analysis, MASK is further responsible for the virtual subproject ANALYSIS, the development and optimization of joint research unit methods of EINP analysis, sample preparation and sample storage, the exchange of methods and coordinates the joint analyses and the central EINP database.

Ecosystem Engineering: Sediment entrainment and flocculation mediated by microbial produced extracellular polymeric substances (EPS)

Das Projekt "Ecosystem Engineering: Sediment entrainment and flocculation mediated by microbial produced extracellular polymeric substances (EPS)" wird vom Umweltbundesamt gefördert und von Universität Stuttgart, Institut für Wasser- und Umweltsystemmodellierung durchgeführt. Sediment erosion and transport is critical to the ecological and commercial health of aquatic habitats from watershed to sea. There is now a consensus that microorganisms inhabiting the system mediate the erosive response of natural sediments ('ecosystem engineers') along with physicochemical properties. The biological mechanism is through secretion of a microbial organic glue (EPS: extracellular polymeric substances) that enhances binding forces between sediment grains to impact sediment stability and post-entrainment flocculation. The proposed work will elucidate the functional capability of heterotrophic bacteria, cyanobacteria and eukaryotic microalgae for mediating freshwater sediments to influence sediment erosion and transport. The potential and relevance of natural biofilms to provide this important 'ecosystem service' will be investigated for different niches in a freshwater habitat. Thereby, variations of the EPS 'quality' and 'quantity' to influence cohesion within sediments and flocs will be related to shifts in biofilm composition, sediment characteristics (e.g. organic background) and varying abiotic conditions (e.g. light, hydrodynamic regime) in the water body. Thus, the proposed interdisciplinary work will contribute to a conceptual understanding of microbial sediment engineering that represents an important ecosystem function in freshwater habitats. The research has wide implications for the water framework directive and sediment management strategies.

Physical and chemical processes that lead to virus inactivation at solid-water interfaces - a combined computational and experimental approach

Das Projekt "Physical and chemical processes that lead to virus inactivation at solid-water interfaces - a combined computational and experimental approach" wird vom Umweltbundesamt gefördert und von Ecole Polytechnique Federale de Lausanne (EPF), Institut d'Amenagement des Terres et des Eaux (IATE) durchgeführt. Virus inactivation processes at water-solid interfaces are key factors determining the persistence of viruses in various aqueous environments. These include environmental systems such as surface and groundwater, various food products, and blood and other bodily fluids. Once released into a body of water, viruses rapidly associate with water-solid interfaces. Interactions with solid surfaces influence virus disinfection, and thus determine the spread and persistence of infective viruses. Despite the importance of interfacial disinfection processes, their underlying causes remain poorly understood. In this sinergia project, we will identify the most important processes contributing to virus inactivation at interfaces, and we will develop a comprehensive model of the virus characteristics and surface properties that influence inactivation behavior. Our investigations will focus on model systems representative of one of the great challenges to public health, namely water resources contaminated by viral pathogens. To obtain a system characterization at the molecular level, we will use a combined computational and experimental approach. This project is divided into three sub-projects: sub-project A will establish the computational framework that simulates the physical-chemical interactions of virus with the water-solid interface; sub-project B will experimentally evaluate the extent and relative importance of physical and chemical processes that lead to virus inactivation; sub-project C will be dedicated to characterizing the microscale distribution of oxidizing chemical species at the solid-water interfaces. The combination of theory and experiment is well suited to overcome the challenges associated with the complex virus-interface system, and to derive a generally valid concept of virus inactivation at solid-water interfaces.

Floating sensorised networked robots for water monitoring (HYDRONET)

Das Projekt "Floating sensorised networked robots for water monitoring (HYDRONET)" wird vom Umweltbundesamt gefördert und von Universitari e di Perfezionamento Sant Anna, Scuola Superiore di Studi durchgeführt. Objective: Water is one of our most precious and valuable resources. It is important to determine how to fairly use, protect and preserve water. New strategies and new technologies are needed to assess the chemical and ecological status of water bodies and to improve the water quality and quantity. The relatively recent progress in micro-electronics and micro-fabrication technologies has allowed a miniaturization of sensors and devices, opening a series of new exciting possibilities for water monitoring. Moreover, robotics and advanced ICTbased technology can dramatically improve detection and prediction of risk/crisis situations, providing new tools for the global management of the water resources. The HydroNet proposal is aimed at designing, developing and testing a new technological platform for improving the monitoring of water bodies based on a network of autonomous, floating and sensorised mini-robots, embedded in an Ambient Intelligence infrastructure. Chemo- and bio-sensors, embedded in the mobile robots will be developed and used for monitoring in real time physical parameters and pollutants in water bodies. Enhanced mathematical models will be developed for simulating the pollutants transport and processes in rivers, lakes and sea. The unmanaged, self-assembling and self-powered wireless infrastructure, with an ever-decreasing cost per unit, will really support decisional bodies and system integrators in managing water bodies resources. The robots and sensors will be part of an Ambient Intelligence platform, which will integrate not only sensors for water monitoring and robot tasks execution, but also communications backhaul systems, databases technologies, knowledge discovery in databases (KDD) processes for extracting and increasing knowledge on water management. Following the computation on stored data, feedback will be sent back to human actors (supervisors, decision makers, industrial people, etc.) and/or artificial actuators, in order to perform actions.

Meso-Scale Modeling and Field Studies of Mobilization and Transport of Semi-Volatile Air Pollutants

Das Projekt "Meso-Scale Modeling and Field Studies of Mobilization and Transport of Semi-Volatile Air Pollutants" wird vom Umweltbundesamt gefördert und von Eidgenössische Technische Hochschule Zürich, Institut für Chemie- und Bioingenieurwissenschaften, Gruppe Umwelt- und Sicherheitstechnologie, durchgeführt. The primary goal of this research is to develop our understanding of a particular class of air pollutants known as persistent semi-volatile pollutants. The project brings together field observations of concentrations of semi-volatile pollutants with computer models that describe sources of the pollutants, their transfer between air and the surface, and their ultimate removal from the environment by chemical destruction or sequestration. It is anticipated that the computer models developed in the project will allow source areas for these pollutants to be identified, and will help to define the relative importance of local and distant sources to total concentrations observed in Swiss air. This information will support targeted efforts to reduce emission sources to improve environmental quality and avoid potential impacts from new pollutants of this class. Background and expected impacts of the project Semi-volatile pollutants are a class of air pollutants that can move back and forth between the air and the ground. They enter the environment from many sources, including industrial lubricants and solvents, consumer products such as flame retardants used in furniture and electronics, insecticides and pesticides used in farming, and combustion processes such as engines in cars and trucks. Semi-volatile pollutants that resist breaking down in the environment can be especially problematic because they can accumulate in the tissues of animals and people and may reach levels that are cause for health concerns. All of the 12 'dirty dozen' Persistent Organic Pollutants (POPs) that are banned under the Stockholm Convention are persistent semi-volatile organic pollutants. Semi-volatile pollutants can undergo several cycles of evaporation from surfaces or water bodies and re-deposition in another location. This ability to 'hop' between the earth's surface and the air allows semi-volatile pollutants to be transported over long distances and to accumulate in areas that are far from cities, industrial areas and farming regions that are the source areas of the chemicals. In this research project, we will work with collaborators in England to measure concentrations of semi-volatile pollutants in air over several consecutive days. The variability in concentrations over a 24 hour period provides clues to the important sources of the pollutants and to exchange processes between air, soil, vegetation and urban surfaces. Data from these monitoring programs will be interpreted using computer models that consider local temperature and weather conditions and properties of the pollutants themselves. It is anticipated that the data gathered from this project will help to improve these models, which can also be applied to predict future concentrations, and to identify new pollutants that may pose future risks to environmental health.

Zirkulation und Schadstoffumsatz in der Nordsee - Phase 2: Deutsche Bucht

Das Projekt "Zirkulation und Schadstoffumsatz in der Nordsee - Phase 2: Deutsche Bucht" wird vom Umweltbundesamt gefördert und von Universität Hamburg, Zentrum für Meeres- und Klimaforschung, Institut für Meereskunde (IfM) durchgeführt. Ziel ist die quantitative Bestimmung des Schadstoffumsatzes in der Nordsee fuer wichtige eingebrachte Substanzen. Unter Nordsee ist das Gesamtsystem aus Luftraum, Wasserkoerper, Schwebstoffen, Sedimenten sowie Organismen zu verstehen. Die anthropogenen Quellen, Transportwege und der Verbleib kritischer Schadstoffe in der Nordsee sollen angegeben werden. Das Vorhaben ist ein integriertes, interdisziplinaeres Projekt. Erste Ergebnisse fuer das Gesamtgebiet der Nordsee liegen bereits seit 1986 und 1987 vor. Der vorliegende Antrag bezieht sich auf die Deutsche Bucht unter Beruecksichtigung der Fernwirkung aus der Nordsee. Hier sollen die bislang erarbeiteten Methoden verfeinert, angewandt und verifiziert, hier sollen Prozesse untersucht und parametrisiert und Schadstoffquellen und -senken quantifiziert werden.

Sea-to-air transport of perfluorinated alkylated substances

Das Projekt "Sea-to-air transport of perfluorinated alkylated substances" wird vom Umweltbundesamt gefördert und von Stockholm University, Department of Applied Environmental Science durchgeführt. Perfluorinated alkyl substances (PFAS) are a recently identified class of environmental contaminants. These compounds are of particular concern due to their extreme persistence in the environment, their tendency to bioaccumulate in food chains, and their occurrence in remote regions of the globe far from any potential sources. PFAS pose unique challenges to environmental and analytical chemists, and many aspects of their environmental behaviour have not yet been explained. This is most particularly true for the mechanisms responsible for their long-range transport in the environment; there is currently no convincing explanation for their occurrence in remote regions. In this project this issue will be explored, testing the hypothesis that aerosol generation via sea spray results in transfer of the involatile PFAS from water bodies to the atmosphere where they are subject to long-range transport. To achieve this objective trace analytical methods will be developed to determine the concentrations of these chemicals in sea water, in the sea water surface microlayer, and in the aerosol formed over the marine surface. These methods will be employed both in controlled laboratory experiments of PFAS mass transfer during sea spray formation as well as in field studies.

Auswertungen von Multisonden- und Tiefenmessungen im Bodensee (Teil II)

Das Projekt "Auswertungen von Multisonden- und Tiefenmessungen im Bodensee (Teil II)" wird vom Umweltbundesamt gefördert und von Landesanstalt für Umwelt Baden-Württemberg, Institut für Seenforschung durchgeführt.

Aquatic Vegetation Patterns along Environmental Gradients: Testing Species Pools and Assembly Rules in Shallow Water Bodies

Das Projekt "Aquatic Vegetation Patterns along Environmental Gradients: Testing Species Pools and Assembly Rules in Shallow Water Bodies" wird vom Umweltbundesamt gefördert und von Universite de Geneve, Laboratoire d'Ecologie et de Biologie Aquatique durchgeführt. Le projet concerne les strategies ecologiques des vegetaux dans les milieux aquatiques peu profonds. Il cherche a tester les possibilites d'application des regles de Keddy (1992) pour la prediction des communautes vegetales aquatiques. Le site experimental initial est forme de 11 etangs situes dans 'la Grande Caricaie' (Rive Sud du Lac de Neuchatel) qui constituent des gradients d'age, de connexions hydrologiques et de teneur en matiere organique des sediments. Quatre hypotheses sont testees: 1. la composition specifique de la communaute se developpant dans un etang peut etre predite connaissant: i) la liste d'especes regionales potentielles, ii) les principales contraintes agissant sur le milieu (stress, pertirbations), iii) les relations entre les contraintes et les strategies des especes. 2. Les variations progressives de conditions de milieu le long des gradients environnementaux n'entrainent pas forcement des modifications de composition specifique mais des variations morphologiques ou de strategies de reproduction au sein d'une meme espece. 3. Dans ces milieux aquatiques avec un faible niveau de perturbation, la composition de la vegetation en place reflete bien la banque de propagules des sediments. 4. Dans les etangs rarement perturbes, le rythme de recolonisation d'une surface decapee est lent de la contribution relative des propagules allogenes et de la propagation vegetative depend de la taille de la surface concernee et de ses connexions hydrologiques. Les methodes mises en eouvre comportent des releves de la vegetation en place, une compilation des caracteristiques ecologiques et biologiques des especes potentielles pour le site, des experiences de germination des sediments, le suivi de la recolonisation de zones decapees, des mesures de la variabilite de l'espece Nymphea alba et des suivis physico-chimiques et sedimentologiques. (FRA)

Ausdehnungs-/Rueckzugsmuster von alluvialen Gewaessern in den Flussauen der Donau (Oesterreich)

Das Projekt "Ausdehnungs-/Rueckzugsmuster von alluvialen Gewaessern in den Flussauen der Donau (Oesterreich)" wird vom Umweltbundesamt gefördert und von Eidgenössische Anstalt für Wasserversorgung, Abwasserreinigung und Gewässerschutz, Fachabteilung Hydrobiologie-Limnologie durchgeführt.

1 2