API src

Found 423 results.

Related terms

ONE MAN'S TRASH IS ANOTHER MAN'S TREASURE

Ökologisch und ökonomisch nachhaltiger Umgang mit Kalamitätsholz, Teilvorhaben 1: Buchdruckerregulierung und Biodiversität

Climate Simulation with CLM, Scenario A1B run no.1, North Atlantic region

[ Derived from parent entry - see the respective metadata entry ] The experiment CLM_A1B_ZS contains Northern European regional climate simulations of the years 2070-2099 on a rotated grid (CLM non hydrostatic, 0.44 deg. hor. resolution, see http://www.clm-community.eu ). It is forced by the first (_1_) run of the global IPCC SRES A1B (EH5-T63L31_OM-GR1.5L40_A1B_1_6H), which describes a possible future world of very rapid economic growth, global population peaking in mid-century and rapid introduction of new and more efficient technologies with a balance across all energy sources. The model region starts at -19.36/-40.48 (lat/lon in rotated coordinates; centre of lower left corner of the domain) with rotated North Pole at 21.3/-175.0 (lat/lon). The number of grid points is 80/146 (lat/lon). The sponge zone (numerically unreliable boundary grid points) consists of 8 grid boxes at each border. EH5-T63L31_OM-GR1.5L40_A1B_1_6H were nudged during the simulations (spectral nudging,von Storch, H., A spectral nudging technique for dynamical downscaling purposes. Mon. Wea. Rev, 2000 ) The regional model variables include two-dimensional near surface fields and atmospheric fields on 6 pressure levels (200, 500, 700, 850, 925 and 1000 hPa) for zonal and meridional wind, temperature and pressure. The time interval of the output fields is 3 hours. Please contact sga"at"dkrz.de for data request details. The output format is netCDF. Experiment with CLM 2.4.6 on HPC Cluster ( blizzard ).

Climate Simulation with CLM, Scenario A1B run no.1, North Atlantic region

[ Derived from parent entry - see the respective metadata entry ] The experiment CLM_A1B_ZS contains Northern European regional climate simulations of the years 2070-2099 on a rotated grid (CLM non hydrostatic, 0.44 deg. hor. resolution, see http://www.clm-community.eu ). It is forced by the first (_1_) run of the global IPCC SRES A1B (EH5-T63L31_OM-GR1.5L40_A1B_1_6H), which describes a possible future world of very rapid economic growth, global population peaking in mid-century and rapid introduction of new and more efficient technologies with a balance across all energy sources. The model region starts at -19.36/-40.48 (lat/lon in rotated coordinates; centre of lower left corner of the domain) with rotated North Pole at 21.3/-175.0 (lat/lon). The number of grid points is 80/146 (lat/lon). The sponge zone (numerically unreliable boundary grid points) consists of 8 grid boxes at each border. EH5-T63L31_OM-GR1.5L40_A1B_1_6H were nudged during the simulations (spectral nudging,von Storch, H., A spectral nudging technique for dynamical downscaling purposes. Mon. Wea. Rev, 2000 ) The regional model variables include two-dimensional near surface fields and atmospheric fields on 6 pressure levels (200, 500, 700, 850, 925 and 1000 hPa) for zonal and meridional wind, temperature and pressure. The time interval of the output fields is 3 hours. Please contact sga"at"dkrz.de for data request details. The output format is netCDF. Experiment with CLM 2.4.6 on HPC Cluster ( blizzard ).

Einsatz von regional erzeugten Wasserlinsen als innovatives und nachhaltiges Eiweißfuttermittel in einer stark N- und P-reduzierten Phasenfütterung von Geflügel

Zielsetzung: Die Tierernährung muss sich heute verschiedenen Herausforderungen stellen. Hierzu zählt eine schnell wachsende Weltbevölkerung und daraus resultierend ein steigender Bedarf an proteinhaltigen Lebens- und Futtermitteln. Ressourcenknappheit und Konkurrenz hinsichtlich Ackerflächen und Wasser gewinnen daher bei der Erzeugung von Futtermitteln eine stetig wachsende Bedeutung. Darüber hinaus sind Umweltwirkungen im Rahmen der Futtermittelproduktion, wie Nährstoffeintrag und Entstehung von klimarelevanten Gasen, verstärkt in den gesellschaftspolitischen Fokus gerückt und machen die Erschließung neuer und nachhaltig erzeugter Futtermittel erforderlich. Eine potentielle Alternative zu den herkömmlichen importierten Proteinfuttermitteln wie Sojaextraktionsschrot stellen Wasserlinsen dar. Sie bieten verschiedene Vorzüge, die für die Verwendung als Futtermittel sprechen. Hierzu zählt eine hohe Flächenproduktivität mit der sich fünf- bis zehnmal höhere Proteinerträge pro Fläche und Jahr als mit Sojapflanzen generieren lassen. Dabei können Wasserlinsen regional in hydroponischen Systemen kultiviert werden und konkurrieren folglich nicht mit anderen Nutzpflanzen um fruchtbares Ackerland. Verglichen mit konventionellen Anbaumethoden, bei denen ein Großteil des Wassers im Boden versickert, kann der Wasserverbrauch in den geschlossenen hydroponischen Systemen um bis zu 90 % reduziert werden. Da mit dem Wasser auch die nicht absorbierten Nährstoffe rezykliert werden, lassen sich zugleich Nährstoffauswaschung in die Umwelt vermeiden. Der hydroponische Anbau von Wasserlinsen kann dabei unabhängig von äußeren Klimabedingungen betrieben werden, so dass eine flexible Standortwahl z. B. in viehintensiven Regionen möglich ist.

Entwicklung, Implementierung und Evaluation eines praxisorientierten Planetary Health-Modell-Curriculums für eine nachhaltige Gesundheitsversorgung durch Hebammen

Zielsetzung: HebPlanet - Hebammen für Planetare Gesundheit: In den letzten Jahren sieht sich die Menschheit mit einer planetaren Dreifachkrise von enormen Ausmaßen konfrontiert. Der Klimawandel, der Verlust der biologischen Vielfalt und die zunehmende Umweltverschmutzung gehen mit zahlreichen negativen Gesundheitsfolgen einher - insbesondere für vulnerable Gruppen wie Schwangere, Stillende, ungeborene Kinder und Säuglinge. Hebammen spielen für diese Bevölkerungsgruppen eine wesentliche Rolle, da sie Familien in einer sehr sensiblen Lebensphase eng - und auch in ihrem häuslichen Umfeld aufsuchend - über einen längeren Zeitraum begleiten. Dabei arbeiten Hebammen auch interdisziplinär, können durch ihre Tätigkeit in sensiblen Lebensphasen als Change Agents und Multiplikator*innen für Planetary Health fungieren und damit zu Gesundheitsförderung und Umweltentlastung bei jungen Familien beitragen. Die Akademisierung der Hebammenausbildung und die damit einhergehende Neugestaltung von Lehrmodulen in den primärqualifizierenden wie auch in den Masterstudiengängen bietet eine optimale Gelegenheit für die Implementierung von Planetary Health Lehrinhalten, auch im Hinblick auf die studiengangübergreifenden Veranstaltungen, z.B. mit Medizinstudierenden. Jedoch sind Planetary Health Themen im Studium zur Hebamme bislang nicht oder nur unzureichend systematisch integriert. Zudem erfolgte bislang keine Erhebung des Wissens- und Kompetenzzuwachses zu Planetary Health und nachhaltiger Gesundheitsversorgung bei Hebammenstudierenden. Ziel des Vorhabens ist die Entwicklung und Verankerung eines Planetary Health Curriculums für, bzw. in, das Studium zur Hebamme. Das übergeordnete Ziel ist, künftige Hebammen zu planetarer Gesundheitskompetenz in ihrem beruflichen Handeln zu befähigen. Dadurch soll ihr Wissen und ihre Kompetenzen zu Planetary Health gestärkt werden, um das Finden, Verstehen, Bewerten und Anwenden, bzw. die Integration in den (beruflichen) Alltag von Informationen zu Planetary Health zu fördern. Somit sollen Hebammen zu transformativen Handlungs- und Nachhaltigkeitskompetenzen ausgebildet werden um Gesundheit und Umwelt in der jetzigen wie in künftigen Generationen zu fördern. Themen und Handlungsfelder wie klimasensible Gesundheitsberatung von Schwangeren und jungen Familien zu nachhaltiger Ernährung, aktiver Mobilität und Konsumverhalten sowie eine nachhaltige und ressourcenschonende Berufspraxis von Hebammen stehen dabei im Vordergrund.

Waldökosystemforschung in der Abteilung des Instituts für Ressourcenschutz am Ökologie-Zentrum (ICP-Forests)

Die Wälder der Erde haben eine grundlegende Bedeutung für die Zukunft der Menschheit. Sie bilden einen Großteil der Erdoberfläche und sind wichtiger Lebensraum der an Land lebenden Tier- und Pflanzenarten. Wälder produzieren nutzbare Stoffe, regulieren Stoff- und Wasserfüsse, die CO2-Konzentration der Atmosphäre sowie das globale und regionale Klima. Der Schutz der Wälder ist von zentraler Bedeutung für eine nachhaltige Existenz der Menschen in sicher funktionierenden Beziehungen zwischen Ökosystemen und der Umwelt. Weil Waldökosysteme auch bei forstlicher Nutzung weitgehend selbstorganisiert funktionieren, sind sie ein spannendes Gebiet der Ökosystemforschung. Die Komplexität von Waldökosystemen ist eine Herausforderung für das Umweltmanagement schlechthin. Im Prinzip zielt es darauf ab, Störungen von Strukturen und Wechselwirkungen mit der Umwelt so gering wie möglich zu halten oder deren Folgen zu therapieren. Dies ist nur möglich, wenn Ökosysteme gesamtheilich betrachtet werden. Allgemeine Ziele von Ökosystemforschung sind deshalb vertieftes Verständnis der Systeme zu entwickeln, Kritische Zustände zu erkennen sowie Möglichkeiten und Grenzen nachhaltiger Entwicklung aufzuzeigen. Unsere Arbeitsgruppe beschäftigt sich damit, Indikatoren für den Zustand von Ökosystemen zu finden, die Dynamik ihrer Umweltbeziehungen zu beschreiben und Grenzen der Belastbarkeit zu erkennen. Ziel ist es, auf systemtheoretischer Grundlage gesamtheitliche Vorstellungen über die Entwicklung von Ökosystems zu bekommen, und ihre Anpassungsfähigkeit an Umweltveränderungen abzuschätzen. Voraussetzung dafür ist eine intensive Systembeobachtung. Datenbasis unserer Forschung an Wäldern bildet die Beobachtung eines depositionsbelasteten und stark versauerten Buchenwaldökosystems. Dementsprechend messen wir fortlaufend nicht nur die Einträge der atmosphärischen Deposition säurewirkamer Luftschadstoffe, Stoffkonzentrationen in der Bodenlösung und Stoffausträge, sondern auch andere Stressgrößen. Die Philosophie gesamtheitlich orientierterer Ökosystemforschung und ökologischer Umweltbeobachtung findet sich in verschiedenen Monitoring Programmen wieder (Schimming et al. 2010). Deshalb kooperiert das Ökologie-Zentrum in solchen Netzwerken und beteiligt sich wegen der weitgehenden Zielkonformität auch am Forstlichen Monitorings der EU. Der Beitrag besteht mit dem bereits genannten, sehr langfristig untersuchten Buchenwaldökosystem im traditionellen Untersuchungsgebiet des Ökologie-Zentrums zum Level II-Programm des ICP-Forests. Das Institut führt die Untersuchungen dort im Auftrag des Ministeriums für Landwirtschaft, Umwelt und Ländliche Räume (MLUR) durch. Seitens des Ökologie-Zentrums Institute und eines Vorgängerprojektes existieren Datenreihen, die sich nunmehr mit einer Länge von mehr als 20 Jahren über einen weitaus längeren Zeitraum erstrecken, als seit Einrichtung des Level II-Programms im Jahre 1995 vergangen ist.

Die vertikale Dimension des Naturschutzes: Ein kostengünstiger Plan zur Einbeziehung unterirdischer Ökosysteme in die Biodiversitäts- und Klimaschutzagenden nach 2020

Subterrane Ökosysteme beherbergen eine breite Vielfalt spezialisierter und endemischer Organismen, die einen einzigartigen Bruchteil der globalen Vielfalt ausmachen. Darüber hinaus leisten sie entscheidende Beiträge der Natur für die Menschen – insbesondere die Bereitstellung von Trinkwasser für mehr als die Hälfte der Weltbevölkerung. Diese unsichtbaren Ökosysteme werden jedoch bei den Biodiversitäts- und Klimaschutzzielen für die Zeit nach 2020 übersehen. Nur 6,9 % der bekannten subterranen Ökosysteme überschneiden sich mit dem ´Netzwerk von Schutzgebieten. Zwei Haupthindernisse sind für diesen Mangel an Schutz verantwortlich. Erstens bleiben subterrane Biodiversitätsmuster weitgehend unkartiert. Zweitens fehlt uns ein mechanistisches Verständnis der Reaktion subterraner Arten auf vom Menschen verursachte Störungen. Das DarCo-Projekt zielt darauf ab, subterrane Biodiversität in ganz Europa zu kartieren und einen expliziten Plan zur Einbeziehung subterraner Ökosysteme in die Biodiversitätsstrategie der Europäischen Union (EU) für 2030 zu entwickeln. Zu diesem Zweck haben wir ein multidisziplinäres Team führender Wissenschaftler in subterraner Biologie und Makroökologie zusammengestellt und Naturschutz aus einem breiten Spektrum europäischer Länder. Das Projekt gliedert sich in drei Arbeitspakete, die der direkten Forschung gewidmet sind (WP2-4), plus ein viertes (WP5), das darauf abzielt, die Verbreitung der Ergebnisse und das Engagement der Interessengruppen für die praktische Umsetzung des Naturschutzes zu maximieren. Zunächst werden wir durch die Zusammenstellung bestehender Datenbanken und die Nutzung eines kapillaren Netzwerks internationaler Mitarbeiter Verbreitungsdaten, Merkmale und Phylogenien für alle wichtigen subterranen Tiergruppen sammeln, einschließlich Krebstiere, Mollusken, Insekten und Wirbeltiere (WP2). Diese Daten werden dazu dienen, die Reaktionen von Arten auf menschliche Bedrohungen mithilfe der hierarchischen Modellierung von Artengemeinschaften (WP3) vorherzusagen. Die Vorhersagen der Modelle zur Veränderung der biologischen Vielfalt werden die Grundlage für eine erste dynamische Kartierung des subterranen Lebens in Europa bilden. Durch die Verschneidung von Karten von Diversitätsmustern, Bedrohungen und Schutzgebieten werden wir einen Plan zum Schutz der subterranen Biodiversität entwerfen, der das aktuelle EU-Netzwerk von Schutzgebieten (Natura 2000) ergänzt und gleichzeitig klimabedingte Veränderungen in subterranen Ökoregionen berücksichtigt (WP4). Schließlich versuchen wir durch gezielte Aktivitäten in WP5, das gesellschaftliche Bewusstsein für subterrane Ökosysteme zu schärfen und Interessengruppen einzuladen, die subterrane Biodiversität in multilaterale Vereinbarungen einzubeziehen. In Übereinstimmung mit dem europäischen Plan S werden wir alle Daten offen und wiederverwendbar machen, indem wir eine zentralisierte und offene Datenbank zum subterranen Leben entwickeln – die Subterranean Biodiversity Platform.

Entschlüsselung der Effekte von Salinität und Sodizität auf Umsatz und Speicherung organischer Substanz in Nassreisböden des tropischen Ostafrikas

Die Versalzung von Böden stellt ein zunehmendes Risiko für die Produktivität im weltweiten Nassreisanbau dar, welcher die Ernährung für etwa 50% der Weltbevölkerung sichert. Es ist jedoch nicht abschließend geklärt, wie sich Salzstress auf den Kreislauf der organischen Bodensubstanz (SOM) und den Vorrat an organischem Kohlenstoff in Paddy-Böden auswirkt, insbesondere in afrikanischen Reisanbausystemen. Vereinzelte Forschungsarbeiten deuten darauf hin, dass Salinität und Sodizität unterschiedliche Wirkungen im SOM-Kreislauf entfalten, aber nur sehr wenige Studien haben bislang die Auswirkungen von salinen und sodischen Bedingungen auf die drei allgemeinen Faktoren des SOM-Umsatzes direkt miteinander verglichen, d. h. den OM-Eintrag (Menge und Qualität der Ernterückstände), OM-Abbau und Mineralisierung sowie SOM-Stabilisierungsmechanismen. Um diese Wissenslücke zu schließen, zielt das vorliegende Projekt darauf ab, Prozesse und Kontrollmechanismen entlang der SOM-Prozesskaskade unter salzbeeinflussten Bedingungen tropischer ostafrikanischer Paddy-Böden zu untersuchen. Das Projekt kombiniert Labor- und Feldexperimente in Zentralmosambik und stützt sich dabei auf definierte Bodenversalzungskategorien mit sowohl salzfreien und jeweils durch Salinität bzw. Sodizität geprägten Böden. Entlang dieser Kategorien werden physikochemische Bodeneigenschaften, der SOC-Eintrag und die daraus resultierenden SOC-Vorräte untersucht, um so Steuerungsfaktoren der SOM-Sequestrierung zu ermitteln. Dichtefraktionierung in Kombination mit Radiokohlenstoffanalysen wird zur Charakterisierung funktioneller SOM-Fraktionen und ihres Umsatzes eingesetzt. Durch chemolytische Analyse molekularer Biomarker wird die chemische Zusammensetzung und der mikrobielle bzw. pflanzliche Ursprung der SOM unter variablen Salzeinfluss erfasst. Zur Bewertung des SOM-Eintrags wird ein Feldversuch mit Streubeuteln über einen vollständigen Anbauzyklus durchgeführt, der die Bestimmung der Zersetzungsdynamik von Reisstroh unter den verschiedenen Salzregimen ermöglicht. Insbesondere werden wir den Massenverlust der Streu, den relativen Beitrag von Invertebraten und Mikroorganismen zur Zersetzung der Rückstände und die entsprechende Veränderung der Streuqualität mittels 13C-NMR-Spektroskopie quantifizieren. Schließlich gewährt ein Inkubationsexperiment unter feldnahen Bedingungen mit isotopisch markiertem Reisstroh Einblicke in die C-Flüsse, die Aufnahme von Reisstroh-C in funktionale SOM-Fraktionen, sowie die Wechselwirkungen zwischen SOM und der Mineralphase unter variablen Redoxbedingungen. Insgesamt bietet unser Projekt zum ersten Mal die Möglichkeit, die verschiedenen Prozesse und kontrollierenden Faktoren entlang der SOM-Prozesskaskade in Paddy-Böden unter salzbeeinflussten Bedingungen zu erfassen und damit ein konzeptionelles Modell für die Auswirkungen verschiedener Salzbelastungen auf die SOM-Sequestrierung zu entwickeln.

Biogeochemie des Kohlenstoffs und Stickstoffs im Arabischen Meer - ein Beitrag zur Internationalen Indian Ocean Expedition 2, Vorhaben: Entwicklung der Sauerstoffminimumzone

1 2 3 4 541 42 43