API src

Found 254 results.

Related terms

Seismisches Geschwindigkeitsmodell für den „Entenschnabel“ in der deutschen Nordsee (Projekt GPDN)

In Anlehnung an die seismischen Geschwindigkeitsmodelle für die zentrale Deutsche Nordsee (Groß, 1986) sowie die niederländischen Offshore-Gebiete (van Dalfsen et al., 2006) wurde im Rahmen des GPDN-Projekts, basierend auf Geschwindigkeitsinformationen aus Tiefbohrungen, ein seismisches Geschwindigkeitsmodell für den nordwestlichsten Teil des deutschen Nordsee-Sektors, den sogenannten „Entenschnabel“, erstellt. Als Berechnungsmethode wurde ein Anfangsgeschwindigkeit-Gradienten-Ansatz analog zu den Arbeiten von Jaritz et al. (1991) und Groß (1986) genutzt, wobei die Anfangsgeschwindigkeiten räumlich variabel und der zugehörige Gradient konstant gehalten wurden. Für das Zechstein-Intervall wurde – wie auch bei den Modellen von Jaritz et al. (1991), Groß (1986) und van Dalfsen et al. (2006) – eine konstante Intervallgeschwindigkeit von 4500 m/s angenommen. Zur Erstellung des Modells wurden insgesamt zwölf stratigraphische Intervalle definiert, wobei das Oberrotliegend das stratigraphisch älteste Intervall repräsentiert. Die Isolinienpläne der Anfangsgeschwindigkeiten und Geschwindigkeitsgradienten wurden mit der Software Schlumberger GeoFrame berechnet und anschließend in ein seismisches Volumenmodell (Seismic Velocity Volume) überführt, das die Geschwindigkeitsparameter in Form von Durchschnittsgeschwindigkeiten enthält. Dieses Modell wurde im Standardformat für seismische Daten (SEG-Y) gespeichert. Informationen zur Erstellung des Geschwindigkeitsmodells sind in Arfai et al. (2014) und Bense et al. (2022) zu finden. Arfai, J., Jähne, F., Lutz, R., Franke, D., Gaedicke, C. & Kley, J. (2014): Late Palaeozoic to Early Cenozoic geological evolution of the northwestern German North Sea (Entenschnabel): New results and insights. Netherlands Journal of Geosciences, 93, 04: 147-174. DOI:doi:10.1017/njg.2014.22 Bense, F., Deutschmann, A., Dzieran, L., Hese, F., Höding, T., Jahnke, C., Lademann, K., Liebsch-Dörschner, T., Müller, C.O., Obst, K., Offermann, P., Schilling, M., Wächter, J. (2022): Potenziale des unterirdischen Speicher- und Wirtschaftsraumes im Norddeutschen Becken (TUNB) - Phase 2: Parametrisierung. Abschlussbericht. Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), p. 193. Groß, U. (1986): Gaspotential Deutsche Nordsee – Die regionale Verteilung der seismischen Anfangsgeschwindigkeiten in der Deutschen Nordsee. 58; Hannover (Bundesanstalt für Geowissenschaften und Rohstoffe (BGR)). Jaritz, W., Best, G., Hildebrand, G. & Juergens, U. (1991): Regionale Analyse der seismischen Geschwindigkeiten in Nordwestdeutschland. Geologisches Jahrbuch, Reihe E, 45: 23-57. van Dalfsen, W., Doornenbal, J.C., Dortland, S. & Gunnink, J.L. (2006): A comprehensive seismic velocity model for the Netherlands based on lithostratigraphic layers. Netherlands Journal of Geosciences - Geologie en Mijnbouw, 85, 4: 277-292. DOI:10.1017/S0016774600023076

Seismisches Geschwindigkeitsmodell auf Basis des Geotektonischen Atlas im Bereich der zentralen deutschen Nordsee (Projekt TUNB)

Die im Rahmen der Arbeiten zum Geotektonischen Atlas (Baldschuhn et al., 1996) erstellten Geschwindigkeitsmodelle von Groß (1986) und Jaritz et al. (1991) wurden im Verbundprojekt „Potenziale des unterirdischen Speicher- und Wirtschaftsraumes im Norddeutschen Becken“ (kurz: Tieferer Untergrund Norddeutsches Becken, TUNB) von der BGR auf Basis vorliegender analoger Daten für die zentrale Deutsche Nordsee sowie die unmittelbar angrenzenden Gebiete in Niedersachsen und Schleswig-Holstein rekonstruiert und in digitale Formate überführt. Für die Rekonstruktion wurden maßgeblich die den Publikationen von Groß (1986) sowie Jaritz et al. (1979, 1991) beigefügten Kartenblätter (Isolinienblätter) genutzt. An den Übergangen zwischen den beiden Kartenwerken wurden bestehende Lücken im Geschwindigkeitsmodell geschlossen und die zugrundeliegenden Daten harmonisiert. Detaillierte Informationen zur Rekonstruktion des Geschwindigkeitsmodells und dessen Umsetzung in ein seismisches Volumenmodell (Seismic Velocity Volume) sind in Bense et al. (2022) zu finden. Baldschuhn, R., Frisch, U. & Kockel, F. (Hrsg.) (1996): Geotektonischer Atlas von NW-Deutschland 1 : 300 000. 19 Karten und 7 Tafeln mit Profilschnitten S.; Hannover (Bundesanstalt für Geowissenschaften und Rohstoffe). Bense, F., Deutschmann, A., Dzieran, L., Hese, F., Höding, T., Jahnke, C., Lademann, K., Liebsch-Dörschner, T., Müller, C.O., Obst, K., Offermann, P., Schilling, M., Wächter, J. (2022): Potenziale des unterirdischen Speicher- und Wirtschaftsraumes im Norddeutschen Becken (TUNB) - Phase 2: Parametrisierung. Abschlussbericht. Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), p. 193. Groß, U. (1986): Gaspotential Deutsche Nordsee – Die regionale Verteilung der seismischen Anfangsgeschwindigkeiten in der Deutschen Nordsee. 58; Hannover (Bundesanstalt für Geowissenschaften und Rohstoffe (BGR)). Jaritz, W., Best, G., Hildebrand, G. & Juergens, U. (1991): Regionale Analyse der seismischen Geschwindigkeiten in Nordwestdeutschland. Geologisches Jahrbuch, Reihe E, 45: 23-57. Jaritz, W., Best, G., Hildebrand, G. & Jürgens, U. (1979): Regionale Analyse der seismischen Geschwindigkeiten in Nordwestdeutschland. 37; Hannover (Bundesanstalt für Geowissenschaften und Rohstoffe (BGR)).

Seismisches Geschwindigkeitsmodell für „Pilotgebiet A“ des GEOSTOR-Projekts in der deutschen Nordsee

Im Gebiet der Ausschließlichen Wirtschaftszone (AWZ) der deutschen Nordsee wurden von der BGR im Rahmen des GEOSTOR-Projektes detaillierte statische geologische 3D-Modelle für zwei potenzielle CO2-Speicherstrukturen im Mittleren Buntsandstein erstellt. Eine der untersuchten potenziellen Speicherstrukturen befindet sich in der zentralen deutschen Nordsee im südwestlichen Teil des Westschleswig-Block, im Bereich des Salzkissens Henni. Für dieses Gebiet, bezeichnet als Pilotgebiet A, wurde für die Zeit-Tiefenwandlung das im Rahmen des TUNB-Projektes von Bense et al. (2022) für die zentrale Deutsche Nordsee rekonstruierte regionale Geschwindigkeitsmodell von Groß (1986) und Jaritz et al. (1991) weiterentwickelt. Die dem TUNB-Geschwindigkeitsmodell zugrundeliegenden regionalen Modellflächen wurden durch die detaillierteren Neuinterpretationen im Pilotgebiet ersetzt, um eine höhere räumliche Auflösung im Vergleich zu den im TUNB-Projekt verwendeten regionalen Modellflächen zu erzielen. Die Geschwindigkeitsintervalle und zugehörigen Parameter des verwendeten V0/K-Ansatzes entsprechen denen des TUNB-Geschwindigkeitsmodells (siehe Bense et al. 2022). Das im Rahmen von GEOSTOR für Pilotgebiet A weiterentwickelte Geschwindigkeitsmodell liegt als seismisches Volumenmodell im SEG-Y Format vor, das die Geschwindigkeitsparameter in Form von Durchschnittsgeschwindigkeiten enthält. Bense, F., Deutschmann, A., Dzieran, L., Hese, F., Höding, T., Jahnke, C., Lademann, K., Liebsch-Dörschner, T., Müller, C.O., Obst, K., Offermann, P., Schilling, M., Wächter, J. (2022): Potenziale des unterirdischen Speicher- und Wirtschaftsraumes im Norddeutschen Becken (TUNB) - Phase 2: Parametrisierung. Abschlussbericht. Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), p. 193. Groß, U. (1986): Gaspotential Deutsche Nordsee – Die regionale Verteilung der seismischen Anfangsgeschwindigkeiten in der Deutschen Nordsee. 58; Hannover (Bundesanstalt für Geowissenschaften und Rohstoffe (BGR)). Jaritz, W., Best, G., Hildebrand, G. & Juergens, U. (1991): Regionale Analyse der seismischen Geschwindigkeiten in Nordwestdeutschland. Geologisches Jahrbuch, Reihe E, 45: 23-57.

Geologisches 3D-Modell - Landesmodell SH 2023

Der Geologische Dienst SH beschäftigt sich mit der Erkundung des tieferen Untergrundes. Zur Landesaufnahme und für Potenzialstudien wurde ein landesweites geologisches 3D-Modell entwickelt, das die Tiefe und Verbreitung von relevanten Formationen des Norddeutschen Beckens zeigt. Die Arbeiten erfolgten im Rahmen des Projektes Potenziale des unterirdischen Speicher- und Wirtschaftsraumes im Norddeutschen Becken - TUNB, das die Bundesanstalt für Geowissenschaften und Rohstoffe in Zusammenarbeit mit den Norddeutschen Geologischen Diensten durchführte. Das Modell besteht aus 17 Basisflächen lithostratigraphischer Horizonte zwischen der Basis des Zechsteins und der Geländeroberfläche, Hüllflächen von Salzdiapiren und Störungsflächen. Die Eingangsdaten der Modellierung sind Daten des Geotektonischen Atlas von NW-Deutschlands (Baldschuhn et al. 2001), Bohrungen und seismische Profile der KW-Industrie sowie Bohrungen des Landesarchivs SH.

V1.3 Herstellung von Produkten aus recycelten Fasern, TP5: Cotesa GmbH

Das Projekt "V1.3 Herstellung von Produkten aus recycelten Fasern, TP5: Cotesa GmbH" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Cotesa GmbH.

Nachhaltige Städte, Kreislaufwirtschaft, Sub-Sahara Afrika 2024

Das Projekt "Nachhaltige Städte, Kreislaufwirtschaft, Sub-Sahara Afrika 2024" wird/wurde gefördert durch: Bundesministerium für Forschung, Technologie und Raumfahrt. Es wird/wurde ausgeführt durch: Universität Stuttgart, Institut für Siedlungswasserbau, Wassergüte- und Abfallwirtschaft, Lehrstuhl für Abfallwirtschaft und Abluft.

Untersuchung des EU Nachhaltigkeitssystems für Biokraftstoffe

Das Projekt "Untersuchung des EU Nachhaltigkeitssystems für Biokraftstoffe" wird/wurde ausgeführt durch: Ecofys Germany GmbH.Die Europäische Richtlinie für erneuerbare Energien (RED) enthält derzeit ein Ziel von 10Prozent erneuerbaren Energien im Verkehrssektor der EU im Jahr 2020. Biokraftstoffe werden bei der Zielerreichung voraussichtlich eine wichtige Rolle spielen. Sämtliche Biokraftstoffe, die auf diese Ziel angerechnet werden, müssen die Erfüllung von verbindlichen Nachhaltigkeitskriterien nachweisen. Zwei Jahre nach der Implementierung der Nachhaltigkeitsanforderungen hat die Europäische Kommission Ecofys gemeinsam mit Winrock und dem Institut für europäische Umweltpolitik (IEEP) beauftragt die praktische Umsetzung der Nachhaltigkeitsanforderungen anhand von drei wichtigen Aspekten zu überprüfen: 1) Notwendigkeit der Einführungen verpflichtender Nachhaltigkeitsanforderungen für Biokraftstoffe zum Schutz von Wasser, Boden und Luft: Die Risiken für Wasser, Boden und Luft durch den Anbau von Biokraftstoffrohstoffen unterscheiden sich kaum von den Risiken anderer landwirtschaftlicher Ausdehnung. Dennoch kann der Biokraftstoffmarkt zu einem erhöhten Druck auf die bestehende Ackerfläche führen. Der Schutz von Wasser, Boden und Luft ist lokal zu betrachten, da die Auswirkungen von der jeweiligen Betriebsführung vor Ort abhängig sind. Im Bericht werden bestehende Maßnahmen zur Vermeidung dieser Risiken, wie etwa freiwillige Nachhaltigkeitsstandards, untersucht und mögliche Kriterien für die Europäische Kommission entwickelt. 2) Effektivität und Verwaltungsaufwand nationaler Systeme zum Nachweis der Erfüllung der verpflichtenden Nachhaltigkeitsanforderungen: Die EU Mitgliedsstaaten haben unterschiedlichen Ansätze zur Implementierung der Nachhaltigkeitsanforderungen verfolgt. Die Wahl des entsprechenden Nachhaltigkeitssystems als solches sagt noch nichts über Effektivität oder Verwaltungsaufwand, allerdings können die entsprechenden Ausgestaltungen schon einen Einfluss haben. Die Ausgestaltung der Berichtspflicht oder die Möglichkeit des Nachweises der Nachhaltigkeit durch alternativer Mechanismen können beispielsweise einen beträchtlichen Einfluss haben. Im Bericht werden Empfehlungen gegeben, wie die Mitgliedsstaaten die Effektivität erhöhen und unnötigen Verwaltungsaufwand vermeiden können. Die nächste Herausforderung für die Mitgliedsstaaten ist die Harmonisierung der verschiedenen Systeme, um so die Effektivität EU weit zu erhöhen. 3) Erfahrungen in der Umsetzung des Massenbilanzsystems zur Überprüfung der Nachhaltigkeit entlang der Biokraftstofflieferkette: Die Biokraftstoffproduzenten haben große Anstrengungen unternommen, um die Rückverfolgbarkeit ihrer Lieferkette zu gewährleisten. Im Großen und Ganzen würden es die Stakeholder bevorzugen, wenn die EU an dem bestehenden Massenbilanzsystem festhält und sicherstellt, dass der gegenwärtige Ansatz optimiert und in allen Mitgliedsstaaten und Nachhaltigkeitssystemen vereinheitlicht wird. (Text gekürzt)

CFK-Recycling in der Kompetenzregion Augsburg

Das Projekt "CFK-Recycling in der Kompetenzregion Augsburg" wird/wurde ausgeführt durch: bifa Umweltinstitut GmbH.The increasing proportion of carbon fibre reinforced plastics (CFRP) in different branches of industry will result in an increasingly larger quantity of CFRP wastes in future. With regard to improved management of natural resources, it is necessary to add these fibres that require energy-intensive production to effective recycling management. But high-quality material recycling is only ecoefficient if the recycled fibres can be used to produce new high-quality and marketable products. Tests carried out up to now indicate that very good results can be expected for large-scale recycling of carbon fibres by means of pyrolysis. The waste pyrolysis plant (WPP) operated in Burgau is the only large-scale pyrolysis plant for municipal wastes in Germany. Use of this plant to treat CFRP wastes represents a unique opportunity for the whole Southern German economy and in particular the Augsburg economic region. In a study funded by the Bavarian State Ministry of the Environment and Health ('Bayerisches Staatsministerium für Umwelt und Gesundheit'), the specific implementation options for the recovery of carbon fibres from composites by means of large-scale pyrolysis have been under investigation since November 2010. To this end, in the first step a development study was carried out, which in particular examined the options for modifying the Burgau WPP for the recycling of CFRP. The knowledge acquired from the pyrolysis tests, the fibre tests and the economic feasibility study confirmed the positive assessment of the overall concept of CFRP recycling in Burgau. As an overall result, unlimited profitability was found for all scenarios with regard to investments in CFRP recycling in Burgau WPP. The work on the development study was carried out by bifa Umweltinstitut GmbH together with the Augsburg-based 'function integrated lightweight construction project group ('Funktionsintegrierter Leichtbau' - FIL) of the Fraunhofer Institute for Chemical Technology (ICT). Methods: analysis and moderation of social processes, economy and management consulting, process engineering

Aktionsprogramm: Modellvorhaben der Raumordnung (MORO), Integrierte Flusslandschaftsentwicklung - Evaluation Grünzug Neckartal

Das Projekt "Aktionsprogramm: Modellvorhaben der Raumordnung (MORO), Integrierte Flusslandschaftsentwicklung - Evaluation Grünzug Neckartal" wird/wurde ausgeführt durch: com.X Institut für Kommunikations-Analyse und Evaluation GbR.Die Vorgehensweise und Ergebnisse des 2009 ausgelaufenen MORO-Projekts 'Grünzug Neckartal' sollen vom Projektstart bis zur Gegenwart analysiert und bewertet werden. Zur geplanten Evaluation gehören die Dokumentation des heutigen (Umsetzungs-)Stands der unter MORO GN zusammengefassten Einzelprojekte sowie die Analyse der Verfahrensweisen und der Akteurs-Konstellationen. Dabei soll geklärt werden, inwieweit MORO-GN initiativ, konzeptionell oder operativ für die Projekte eine tragende Wirkung entfaltet hat. Wie andere bedeutende Siedlungs- und Wirtschaftsräume wurde die Flusslandschaft entlang des mittleren Neckars stark umgestaltet und überbaut - häufig mit ästhetisch und ökologisch negativen Folgen für die städtebaulichen und landschaftlichen Qualitäten. Als Bottom-up-Initiative riefen die Architekten Grub und Lejeune-Grub daher 2004 den 'Grünzug Neckartal' nebst Stiftung zur Kofinanzierung durch Bürger und Wirtschaft ins Leben. Übergeordnetes Ziel der Initiative 'Grünzug Neckartal' (GN) war die Qualitätsverbesserung der stark vernuzten Flusslandschaft entlang des mittleren Neckars als Arbeits- und Wohnstandort, als Naturraum und Naherholungsbereich. Mittels einer Kampagne machte eine renommierte Werbeagentur den 'Grünzug Neckartal' als Marke bekannt. Für das BMVBS in seiner Verantwortung für Instandhaltung und Ausbau der Wasserstraße Neckar und mit starkem Interesse an der Integration von technisch notwendigen Maßnahmen einerseits mit ökologischen oder kulturellen Verbesserungen andererseits bot sich die Initiative als Partner an, zumal sie modellhaft ein kooperatives Verfahren der integrierten Flusslandschaftsentwicklung vorsah. Als Modellprojekt der Raumordnung wurde GN daher durch das BMVBS in drei Teilprojekten zwischen 2005 und 2009 gefördert. Zielsetzung: Die Evaluation nimmt Verfahrensweisen und Ergebnisse des Projekts MORO GN vom Projektstart bis zur Gegenwart in den Blick und soll - allgemein formulierte Projektziele als Basis einer Erfolgskontrolle spezifizieren sowie das Erreichen dieser Ziele überprüfen - die Unterstützung von Einzelprojekten durch MORO GN dokumentieren und ihren Erfolg bzw. ihre Wirkungen aus heutiger Sicht ermitteln - die Nachhaltigkeit der Impulssetzungen (auf gegenwärtige, thematisch verknüpfte Projekte am Neckar) und heutige Rolle des MORO-Konzepts 'Grünzug Neckartal' herausarbeiten - die Einschätzung und heutige Sicht der Akteure auf die MORO-Förderung, auf den Erfolg der Akteurs-Zusammenarbeit sowie auf Eignung und Effizienz von Akteurskonstellationen im Sinne der Projektziele ermitteln und einordnen - auf dieser Basis Effizienz und Wirkung der eingesetzten MORO-Mittel untersuchen - aus den Analysen ableiten, welche Handlungsansätze und Instrumente sich im Rahmen von GN als raumordnerisch modellhaft und übertragbar erwiesen haben. (Text gekürzt)

Nachhaltige Städte, Kreislaufwirtschaft, Sub-Sahara Afrika 2024, Teilvorhaben: Analyse der Methodenanwendung

Das Projekt "Nachhaltige Städte, Kreislaufwirtschaft, Sub-Sahara Afrika 2024, Teilvorhaben: Analyse der Methodenanwendung" wird/wurde gefördert durch: Bundesministerium für Forschung, Technologie und Raumfahrt. Es wird/wurde ausgeführt durch: AT-Verband zur Förderung angepasster, sozial- und umweltverträglicher Technologien e.V..

1 2 3 4 524 25 26