API src

Found 1060 results.

Related terms

Naturfasern

Faserpflanzen gehören zu den ältesten nachwachsenden Rohstoffen. Eine große Anzahl von Pflanzenarten enthalten vor allem aus Zellulose bestehende Fasern mit unterschiedlichen Eigenschaften. Die größte wirtschaftliche Bedeutung hat die Baumwolle erlangt, aber auch Jute, Sisal, Flachs, Hanf und Kokosfasern spielen eine wichtige Rolle. Im Freistaat Sachsen ist in den Regionen Erzgebirge, Oberlausitz und Vogtland der Flachs (Faserlein), außerhalb der höheren Mittelgebirgslagen auch der Hanf anbauwürdig. Flachs und Hanf sind botanisch und bezüglich ihrer Wuchsform sehr unterschiedliche Pflanzen. Verwendung finden Kurz- und Langfasern in Mischgarnen, Verbundwerkstoffen, Geotextilien, Dämmstoffen, Verpackungsmaterialien, technischen Textilien, Asbestersatz.

Errichtung und Betrieb einer LXP-Anlage zur Herstellung chemischer Grundstoffe aus 2G Biomasse am Standort Genthin

Die LXP Group hat ein Verfahren entwickelt, bei welchem verholzte Biomasse (sog. Lignocellulose) mittels konzentrierter Säure aufgeschlossen und im Anschluss partiell ausgefällt wird. Dadurch kann die Biomasse in drei Fraktionen aufgeteilt werden. Nach der vollständigen Auswaschung aller eingesetzten Betriebs-mittel entstehen drei Produktströme:

Ökologische Bewertung textiler Fasern – von „klassischen“ Fasern über Recyclingfasern bis hin zu innovativen und wiederentdeckten Fasern

Der Bericht analysiert die Umweltauswirkungen und Optimierungsansätze der in der Textilindustrie herkömmlich eingesetzten Fasern (z. B. Baumwolle, regenerierte Zellulosefasern, Polyester), mit dem Ziel, die faserspezifischen Anforderungen des Blauen Engel für Textilien (DE-UZ 154) zu überarbeiten. Der Bericht adressiert auch den Status quo der Kreislaufwirtschaft im Textilsektor, um die Anforderungen zu Recyclingfasern anzupassen. Auch wiederentdeckte Fasern (wie z. B. Brennnessel), neue bzw. innovative Fasern, Reste aus der Agrar- und Lebensmittelproduktion oder der Einsatz von biogenen Ressourcen für die Herstellung von synthetischen Fasern wurden eingehend betrachtet. Diese Erkenntnisse flossen in den überarbeiteten Blauen Engel für Textilien. Veröffentlicht in Texte | 117/2024.

Zero Waste Wohnungsbau: Leuchtturmprojekt zur Klimaschutz- und Ressourcenschutzwende im kommunalen Wohnungsbau

Angesichts der Klimanotlage steht auch die Bauwirtschaft in Berlin vor einem gravierenden Wandel: Schwindende Rohstoffe, knapper werdende Deponieräume sowie ambitionierte Klimaschutzziele machen es unerlässlich, den hohen Ressourceneinsatz im Bauwesen zu überdenken. Rund 60 Prozent der in Berlin verwendeten Rohstoffe sowie 40 Prozent der schädlichen Klimagasemissionen werden durch die Bauwirtschaft verursacht. Nach der vom Senat beschlossenen Klimanotlage ist es daher erforderlich, dass auch eine Wende im Bausektor erfolgt und zunehmend ressourcenschonende und klimaverträglichere Baustoffe bei Bauvorhaben zur Anwendung kommen. Selbst bei einem ambitionierten Gebäudeenergieverbrauchsstandard werden rund 50 Prozent der Klimagasemissionen im Gebäudebereich durch die eingesetzten Baustoffe verursacht. Insbesondere beim städtischen Berliner Wohnungsbau besteht noch ein großes bisher nicht genutztes Potenzial an vermeidbaren schädlichen Klimagasemissionen. Der derzeitige Ansatz im Wohnungsneubau ist vor allem von Effizienz im Hinblick auf Stückzahlen und Kostenminimierung geprägt. Aus dem Innovationsförderfond wurden u.a. für das Leuchtturmprojekt der STADT UND LAND Fördermittel zur Verfügung gestellt (Quelle: Vorlage der Senatsverwaltung für Umwelt, Verkehr und Klimaschutz vom 20.07.2021 zu innovationsfördernden Maßnahmen im Bereich Klimaschutz und Mobilitätswende). Anhand von zwei Projekten mit insgesamt drei Gebäuden sollen anhand des Typenhaus-Plus der STADT UND LAND Potentiale des klima-, kreislaufgerechten und ressourcenoptimierten Bauens im öffentlichen Mietwohnungsbau ermittelt und aufgezeigt werden und damit Grundlagen für eine weiterführende Anwendung am öffentlichen und privaten Berliner Wohnungsmarkt geschaffen werden. Die Gebäude werden mit unterschiedlichen Materialien und Ansätzen geplant und im Rahmen des Projektes in Bezug auf ihre Übertragbarkeit auf andere Mietwohnungsbauten untersucht und miteinander verglichen. 30. März 2022: Holz, Ziegel, Lehm – STADT UND LAND Wohnbauten-Gesellschaft startet Pilotprojekt zum nachhaltigen Geschosswohnungsbau Bei dem Teilprojekt A (Alt-Britz 107, 12359 Berlin) werden auf einem Grundstück zwei in Grundrissen, Kubatur und Geschossigkeit gleiche Gebäude in Holz-Lehm- und Ziegel-Holz-Bauweise geplant, realisiert und in den ersten Jahren des Betriebs wissenschaftlich begleitet und ausgewertet. Das Projekt hat im Kern das Ziel des einfachen, robusten Bauens und strebt an über den Einsatz klimasteuernder Baustoffe und einen klimaangepassten Entwurf den Einsatz von Gebäudetechnik extrem zu reduzieren und auf Klima- und Lüftungstechnik zu verzichten. Das Projekt wird wissenschaftlich von der TU Berlin, der Universität Stuttgart und der TU Braunschweig begleitet. Im Teilprojekt B – Buckower Felder, Haus 5 Baufeld VIII, Berlin-Neukölln wird ein Typenhaus Plus in nachhaltiger, ökologischer Bauweise als Typenhaus-Nachhaltigkeit weiterentwickelt und realisiert. Dabei sollen beim Roh- und Ausbau des Gebäudes im größtmöglichen Umfang Holzbaustoffe zum Einsatz kommen. Die somit schon deutlich verbesserte CO 2 -Bilanz soll durch den Einsatz aufbereiteter Baustoffe, z.B. Recyclingbeton, weiter optimiert werden. Darüber hinaus wird die Wiederverwertbarkeit und Rückführung der eingesetzten Baumaterialien in die Kreislaufwirtschaft nach dem Lebenszyklusende des Gebäudes angestrebt. Der Vergleich erfolgt mit einem grundrissgleichen Typenhaus, welches in mineralischer Bauweise errichtet wird. Die Ansichten können sich im weiteren Projektverlauf ändern. Die energetische Optimierung und der klimaneutrale Betrieb im Wohnungsbau sind weitgehend erforscht und prototypisch realisiert. Die Ziele des Leuchtturmprojektes Klima- und Ressourcenschutzwende liegen daher in der Beantwortung der Frage, welche materielle Ressourcenanwendung in der Gebäudekonstruktion zu einer weiteren CO 2 -Einsparung führt. Ziel des Projektes ist es aufzuzeigen, wieviel CO 2 durch die Verwendung von ökologischen Baustoffen (Ökobilanz) wie z.B. Holz, Zellulose und Recycling-Material im Vergleich zu konventionellen Materialien – bei eingehaltenen Anforderungen des Wärme-, Schall- und Brandschutzes – eingespart werden kann. Zum anderen sollen die unterschiedlichen Bauweisen Holz-Lehm Haus und Ziegel-Holz Haus langfristig miteinander verglichen werden, um für die Zukunft grundsätzliche Erkenntnisse für die Umsetzung im Geschosswohnungsbau zu erhalten. Durch den Einsatz nachwachsender Rohstoffe in der Gebäudehülle wird eine CO 2 -Einsparung von ca. 50% erwartet. Über die LCA Berechnungen mit e-LCA des BNB Systems hinaus werden mögliche Wirkungen des kreislaufgerechten Bauens der Pilotprojekte auf das Modul D also die Wiederverendung und Wiederverwertung zum Ende der Nutzungsphase aufgezeigt. Teilprojekt A Generalplanung: Arge ZRS Architekten GvA mbH und Bruno Fioretti Marquez GmbH Teilprojekt B Totalunternehmer: mib – Märkische Ingenieur Bau GmbH mit Arnold und Gladisch Objektplanung Generalplanung GmbH 2 Mio. € Förderung durch die Senatsverwaltung für Mobilität, Verkehr, Klimaschutz und Umwelt, davon 1,5 Mio. € für das Teilprojekt A und 0,5 Mio. € für das Teilprojekt B 01.01.2022-30.11.2024

Wärmedämmung und Fenster

Weniger Wärmeverluste, mehr Komfort: Wände und Fenster richtig dämmen Wie Sie Ihre Hausdämmung richtig planen und Wärmeschutz effektiv umsetzen Begrenzen Sie Wärmeverluste mit einer Außendämmung. Wenn das nicht möglich ist, kann Innendämmung eine gute Lösung sein. Bauen Sie hocheffiziente Fenster mit Drei-Scheiben-Verglasung ein. Wählen Sie Dämmstoffe nach ökologischen Gesichtspunkten aus. Gewusst wie Außenwanddämmung Außenwände tragen durchschnittlich ca. 20 bis 35 Prozent zu den Wärmeverlusten eines Einfamilienhauses bei. Wärmedämmmaßnahmen sind hier besonders wirksam und können die Wärmeverluste durch das Bauteil um 65 bis 80 Prozent verringern. Eine Außendämmung bietet sich an, falls das Haus ohnehin eine Modernisierung von außen (Reinigung, Schadensbeseitigung, Neuverputz oder Anstrich) braucht. Dann sind die zusätzlichen Kosten für die Dämmung am geringsten. Eine Außendämmung bietet zahlreiche Vorteile: Sie verringert konstruktiv oder geometrisch bedingte Wärmebrücken (z. B. Heizkörpernischen, Fensterstürze). Sie lässt die Außenwand als Wärmespeicher wirken: Innenräume bleiben im Sommer länger kühl und im Winter länger warm. Sie verringert Feuchtigkeits- und Frostschäden, kann Bauschäden als Folge von Temperaturspannungen vorbeugen und den Schallschutz verbessern. Mit planerischem Geschick lässt sich eine Außenwanddämmung so gestalten, dass die Fassade schön aussieht. Tricks & häufige Fehler: Eine Außenwanddämmung sollte den U-Wert (Wärmedurchgangskoeffizient) der Wand auf unter 0,20 W/(m²K), besser auf unter 0,15 W/(m²K) verringern. Die Dämmebene sollte eine lückenlose Hülle um Ihr Gebäude bilden. Lassen Sie sich das auf Plänen zeigen. Wärmebrücken sollten abgeschwächt oder konstruktiv angepasst werden. Selbst dann können sie noch 20 Prozent der Wärmeverluste ausmachen. Fenster sollten vor die Außenwand in die Dämmebene versetzt werden. Ist das nicht möglich, sollte die Dämmung in die Fensterlaibung hineingeführt werden und den Fensterrahmen überdecken, um Wärmebrücken zu vermeiden. Dämmung der Rollladenkästen nicht vergessen! Der Dämmstoff sollte lückenlos und flächenbündig angebracht werden. Den Zwischenraum von zweischaligem Mauerwerk zu dämmen, ist besonders kostengünstig (aber auch weniger effektiv). Wichtig: Auch dicke, massive Wände führen zu hohen Wärmeverlusten im Winter, wenn sie keine zusätzliche Wärmedämmung haben. Dies lässt sich gut z. B. in alten Ritterburgen nachempfinden. Wichtig: Wird im Alltagssprachgebrauch missverständlich von "atmenden Wänden" gesprochen, ist von der Fähigkeit der Wand die Rede, die Luftfeuchte im Raum zu regulieren. Dieser Effekt kann das Raumklima verbessern. Für den Luftaustausch in einer Wohnung und die Abfuhr der Luftfeuchte hat das keine Bedeutung, da hierfür allein das Lüften sorgt. Grundsätzlich sollten die Schichten eines Wandaufbaus von innen nach außen immer leichter Feuchtigkeit hindurchlassen, damit sich keine Feuchtigkeit im Wandaufbau anreichert ("Diffusionsoffenheit"). Ein ausreichender Dachüberstand hält Schlagregen von der Fassade weg. Sparpotenzial für Dämmung und Fenster (Einfamilienhaus) Quelle: www.co2online.de Sparpotenzial für Dämmung und Fenster (Mehrfamilienhaus) Quelle: www.co2online.de Sparpotenzial für Dämmung und Fenster (Einfamilienhaus) Sparpotenzial für Dämmung und Fenster (Mehrfamilienhaus) Innenwanddämmung Für eine Innendämmung gibt es verschiedene Gründe: Einzelne Räume werden nacheinander modernisiert. Ausgewählte Räume sollen schnell aufheizbar sein (z. B. Gästezimmer). Die Außenfassade ist denkmalgeschützt und daher eine Außendämmung nicht möglich. Die Innendämmung weist aber auch Nachteile auf. So ist die mögliche Dämmstoffdicke meist begrenzt, da die Wohnfläche durch die Innendämmung verkleinert wird. Wärmebrücken sind konstruktiv schwieriger zu vermeiden. Eine Innendämmung ist in der Regel nur möglich, wenn keine Feuchte im Mauerwerk aufsteigt, es nur geringe Schlagregenbeanspruchung gibt und die Konstruktion verhindert, dass die Feuchtigkeit aus der Raumluft dauerhaft in die Wärmedämmung gelangt. Dies kann durch eine Dampfbremse in der Wandkonstruktion oder durch kapillaraktiven Dämmstoff geschehen. Tricks & häufige Fehler: Eine Innenwanddämmung sollte den U-Wert der Wand auf unter 0,35 W/(m²K) verringern. Beauftragen Sie eine Fachplanung einschließlich hygrothermischer Simulation. Wärmebrücken sollten so gut es geht vermieden werden, z. B. indem die Dämmung an Decke und Innenwänden in den Raum hinein verlängert wird. Fensterlaibungen dürfen nicht vergessen werden. Die Oberflächentemperatur sollte vor allem in Ecken und hinter Möbeln über 13 °C bleiben und besser darüber liegen, um auch bei höheren Raumluftfeuchten auf der sicheren Seite zu sein. Eine sorgfältige Ausführung ist bei Innendämmung besonders wichtig. Vor allem darf es keine Luftspalten zwischen Wand und Dämmstoff geben. Eine luftdichte Konstruktion ist essentiell. Lassen Sie eine lückenlose luftdichte Ebene planen und sich auf Plänen zeigen. Besondere Sorgfalt ist bei Steckdosen, Bohrlöchern usw. geboten. Ein Blower-Door-Test für das ganze Haus zeigt, ob die notwendige Luftdichtheit auch erreicht wurde. Zusätzlich oder für einzelne Räume zeigt eine Thermografieaufnahme, ob es noch kalte Stellen gibt oder kalte Luft in die Konstruktion eindringt. Noch wichtiger als bei Außendämmung ist ein Lüftungskonzept, um die Raumluftfeuchte kontinuierlich nach draußen zu führen. Für Innendämmung sind Dämmstoffe mit niedrigen Emissionen von flüchtigen organischen Verbindungen zu bevorzugen. Ein Nachweis über die Einhaltung der Kriterien des Ausschusses zur gesundheitlichen Bewertung von Bauprodukten (AgBB) ist eine zuverlässige Orientierungshilfe. Dach und oberste Geschossdecke Das Dach ist mit ca. 20 bis 30 Prozent an den Wärmeverlusten eines Gebäudes beteiligt. Hier sind bauteilbezogene Einsparungen von 50 bis 70 Prozent möglich. Ein schlecht gedämmtes Dach führt im Sommer zu einem überhitzten und im Winter zu einem kalten Dachraum. Bleibt er ungenutzt oder dient er als Lagerraum, reicht es, die oberste Geschossdecke zu dämmen. Besonders wichtig bei der Dachdämmung ist der Einbau einer dampfbremsenden und luftdichten Schicht von innen, da auf diese Weise unnötige Wärmeverluste über Luftströmungen vermieden werden und die Raumluftfeuchte nicht in die Dämmung eindringen kann. Bei der Zwischensparrendämmung muss das Dämmmaterial überall dicht an den Sparren anliegen. Die Dämmung der obersten Geschossdecke kann auch kostengünstig in Eigenleistung erbracht werden. Für die Dämmung der obersten Geschossdecke eignen sich Dämmplatten (z. B. Hartschaum, Mineralwolle, Holzfaser) oder Schüttungen (z. B. Perlite, Zellulose). Der Dämmstoff wird auf der Decke und/oder zwischen vorhandenen Deckenbalken eingebracht. Wird der Dachraum als Abstellraum genutzt, ist über der Wärmedämmung eine tragfähige, begehbare Fußbodenfläche notwendig. Dachgauben sind oft besonders schlecht isoliert und verlieren viel Wärme. Größere Hohlräume nach oben zur Dachdeckung hin können mit klassischem Dämmstoff gefüllt werden. Ist der Platz zum Beispiel an den Seiten begrenzt, kommen Hochleistungs-Dämmstoffe in Frage. Beim Dämmen sollten Wärmebrücken gezielt abgeschwächt werden. Tricks & häufige Fehler: Eine Dachdämmung sollte den U-Wert des Dachs oder der obersten Geschossdecke auf unter 0,15 W/(m²K) verringern. Reicht die vorhandene Sparrenhöhe nicht aus, um die empfohlene Dämmstoffdicke zu erzielen, kann eine zusätzliche Schicht Wärmedämmung an der Innenseite der Dachsparren als Untersparrendämmung die notwendige Höhe schaffen, ohne das Dach neu eindecken zu müssen. In Holzbalkendecken unter Einschubdecken oder Blindböden und in Dachaufbauten können sich belüftete Hohlräume verbergen, die die darüber oder dahinter liegende Dämmung unwirksam machen würden. Dafür eine Lösung zu entwickeln, ist eine Aufgabe für die Fachplanung. Schwierige Stellen wie Wandanschlüsse, Fenster und Durchbrüche sind detailliert zu planen (Luftdichtheit) und sorgfältig auszuführen. Abseiten-/ Drempelwände und die dahinter liegenden Randbereiche zur Dachkante dürfen nicht vergessen werden. Kellerdecke Durch den Fußboden gehen etwa 10 Prozent der Heizwärme verloren. Eine Dämmung der Kellerdecke kann diese Wärmeverluste um ca. 50 Prozent reduzieren. Die Unterseite einer massiven Kellerdecke wird mit Plattendämmstoffen verkleidet; das ist eine einfache und kostengünstige Maßnahme. Dies können Sie auch in Eigenleistung umsetzen. Hohlkonstruktionen wie Holzbalkendecken oder Gewölbedecken können von oben oder von unten mit Dämmstoff ausgeblasen werden. Tricks & häufige Fehler: Eine Wärmedämmung sollte den U-Wert der Kellerdecke auf unter 0,25 W/(m²K) verringern. Dämmen Sie nicht nur die Kellerdecke, sondern ziehen Sie die Dämmung ein Stück weit die Wände hinunter, um Wärmebrücken zu vermeiden. Packen Sie Leitungen an der Kellerdecke in die Dämmung ein, anstatt an diesen Stellen die Dämmung auszusetzen. So geht's: Halten Sie ein Feuerzeug oder eine Kerzenflamme vor die Verglasung, so spiegelt sich eine Flamme an jeder Glasoberfläche. Die etwas dunklere Flamme zeigt die spezielle Wärmeschutz-Beschichtung an, die ein modernes Fenster haben sollte. Fenster Die Fenster eines unsanierten Hauses verlieren 20 bis 40 Prozent der gesamten Heizwärme:  Verglasung und Rahmen verlieren Wärme, durch undichte Rahmen entweicht warme Raumluft,. Die Energiebilanz der Fensterflächen ist umso besser, je niedriger die Wärmeverluste und je höher die Wärmegewinne sind. Wärmeverluste können vor allem durch die Konstruktionsweise und den sorgfältigen Einbau der Fenster minimiert werden. Rollläden und Vorhänge unterstützen den Wärmeschutz. Die Wärmegewinne eines Fensters sind umso größer, je mehr Sonnenstrahlung es durchlässt. Ist es zur Sonne ausgerichtet und nachts gut gegen Wärmeverluste geschützt, kann es eine bessere Energiebilanz als eine gut wärmegedämmte Außenwand aufweisen. Fenster mit besonders gutem Wärmeschutz (3-fach-Verglasung) erreichen sogar eine positive Energiebilanz. Sie gewinnen in der Heizperiode mehr Sonnenenergie als an Raumwärme verloren geht. Um die Überhitzung im Sommer zu verhindern, gibt es Fenster mit Beschichtungen, die weniger Sonnenenergie einlassen. Wichtig ist, dass Sie bei der Wahl neuer Verglasungen nicht nur auf den U-Wert (Wärmedurchgangskoeffizient) schauen, sondern sich auch zum g-Wert (Gesamtenergiedurchlassgrad) beraten lassen. Auf den Rahmen entfallen 15 bis 35 Prozent des Wärmeverlustes des gesamten Fensters. Die Rahmenkonstruktion entscheidet demnach auch über die Energieeinsparung. Holz- und Kunststoffrahmen haben die beste Dämmwirkung. Gleichwertige Metallrahmen (Aluminium, Stahl) müssen durch innere Abstandhalter thermisch getrennt sein, um die Wärmeleitung des Materials zu verringern. Tricks & häufige Fehler: Wärmeverluste durch undichte Fenster vermeiden – ein einfacher Test klärt auf: Klemmen Sie ein Blatt Papier zwischen Fensterflügel und Rahmen. Können Sie das Blatt aus dem geschlossenen Fenster einfach herausziehen, sollten Sie das Fenster einstellen oder auch Dichtungen austauschen lassen. Ein energiesparendes Fenster sollte einen U W -Wert kleiner 0,9 W/(m²K) haben. Dies wird erreicht durch Dreischeibenverglasung, gedämmtem Rahmen und verringerte Wärmebrücken. Der g-Wert sollte passend zur Energiebilanz gewählt werden. Historische Fenster lassen sich aufwerten, indem Sie die Verglasung austauschen lassen. Bei Kastenfenstern können Sie in die Innenflügel eine besonders schmale und effektive Vakuum-Verglasung mit U g -Wert 0,7 W/(m²K) oder zumindest eine Standard-Verglasung mit U g -Wert 1,1 W/(m²K) einbauen lassen. Auf diese Weise bleiben Konstruktionsprinzip und Erscheinungsbild der Fenster erhalten. Verglasungsart erkennen: Halten Sie ein Feuerzeug oder eine Kerzenflamme vor die Verglasung, so spiegelt sich eine Flamme an jeder Glasoberfläche. Zwei Flammen-Pärchen zeigen eine Zweifach-Verglasung. Hat eine der gespiegelten Flammen eine sichtbar andere Farbe, handelt es sich um eine halbwegs zeitgemäße Wärmeschutz-Verglasung mit "Low-E-Beschichtung", die die Wärmestrahlung zurück in den Raum reflektiert. Haben alle Flammen die gleiche Farbe, sollte diese "Isolier-Verglasung" bald ausgetauscht werden, weil die Wärmeverluste dreimal so hoch sind wie bei einer Dreifach-Verglasung. In eine gedämmte Wand sollten Fenster so eingebaut werden, dass die Fensterrahmen in der Dämmebene sitzen. Die Außen- oder Innendämmung sollte den Fensterrahmen einige Zentimeter überdecken. Das minimiert Wärmebrücken. Lassen Sie einen dauerhaft luftdichten Wandanschluss mittels Fugendichtband oder Anschlussbändern herstellen. Einfacher Bauschaum genügt nicht. Eine Luftdichtheitsmessung weist nach, dass die Wandanschlüsse sorgfältig gearbeitet wurden. Neue Fenster schließen dichter: Stellen Sie eine ausreichende Lüftung der Wohnung sicher und kontrollieren Sie regelmäßig die Luftfeuchte in der Wohnung mit einem Hygrometer. Am verlässlichsten funktioniert die Wohnungslüftung mit einer Lüftungsanlage . Sind zudem die Außenwände gedämmt, sinkt das Schimmelrisiko auf nahezu Null. Lassen Sie bei dieser Gelegenheit einen Rollladen oder anderen effektiven außenliegenden Sonnenschutz anbringen – siehe Kühle Räume im Sommer . Dämmstoffe Das Grundprinzip von Dämmstoffen ist: Sie schließen viel Luft in kleinen Poren ein, was den gewünschten isolierenden Effekt erzeugt. Wie wirkungsvoll sie das tun, gibt die Wärmeleitfähigkeit λ ("Lambda") an. Je kleiner sie ist, desto besser. Mineralische Dämmstoffe wie Steinwolle oder Glaswolle werden aus geschmolzenem Gestein oder Glas hergestellt. Sie sind nicht brennbar, sodass auf teilweise bedenkliche Flammschutzmittel verzichtet werden kann. Kunststoffbasierte Dämmstoffe wie Polystyrol werden aus Erdöl hergestellt. Sie erreichen sehr geringe λ-Werte, sind also dort sinnvoll, wo auf wenig Raum viel Dämmwirkung erreicht werden muss. Natürliche Dämmstoffe sind weniger leistungsfähig, was größere Dämmstoffstärken oft ausgleichen können. Sie haben den entscheidenden Vorteil, dass ihre Rohstoffe nachwachsen und gar nicht oder mit nur geringem Aufwand aufbereitet werden müssen. Pflanzliche Dämmstoffe speichern zudem den Kohlenstoff langfristig, den die Pflanzen zuvor aus der Luft aufgenommen haben. Eine Ausnahme sind Holzwolledämmplatten. Durch ihren aufwendigen Herstellungsprozess ist ihr Umweltfußabdruck größer, als man es erwarten würde. Positiv hervorzuheben sind Stroh, da es als Nebenprodukt der Landwirtschaft keine Nahrungsmittelkonkurrenz erzeugt, und Materialien aus Paludikultur : Sie sind zwar noch nicht am Markt standardmäßig verfügbar, aber die Nachfrage nach ihnen unterstützt die Wiedervernässung von Mooren, was für den ⁠ Klimaschutz ⁠ essentiell ist. Ebenfalls zu erwähnen ist Zellulose, die aus Altpapier gewonnen wird und sowohl finanziell als auch ökologisch eine sehr gute Option ist. Unabhängig vom Dämmstoff gilt: Die für die Herstellung benötigte Energie, auch graue Energie genannt, amortisiert sich durch die Energieeinsparung beim Heizen oft binnen weniger Monate. Dämmstoffe aus nachwachsenden Rohstoffen können eine noch bessere Energiebilanz haben, vor allem wenn sie als Faserdämmstoff eingesetzt werden. Nachwachsende Rohstoffe zu Dämmplatten zu verarbeiten, hat einen vergleichsweise hohen Herstellungsaufwand. Erkundigen Sie sich nach Herstellerangaben. Ein weiteres Augenmerk muss auf dem Ende des Lebenszyklus liegen. Das qualitätserhaltende Recycling von Dämmstoffen ist noch nicht in der Breite etabliert. Insbesondere verklebte Konstruktionen wie konventionelle Wärmedämmverbundsysteme erschweren die sortenreine Rückgewinnung. Sehr gut zurückgewinnen lassen sich Einblasdämmstoffe. Es gibt sie aus mineralischen, kunststoffbasierten und natürlichen Dämmstoffen. Die Materialien werden dafür nicht zu Platten verarbeitet, sondern lose in Hohlräume gefüllt, aus denen sie auch wieder abgesaugt und an anderer Stelle erneut eingebaut werden können. Inzwischen gibt es auch trennbare Wärmedämmverbundsysteme auf dem Markt. Zum Beispiel den Gewinner des Bundespreis Ecodesign von 2019 . Bei einer weiteren Sonderanwendung kommen Perimeterdämmstoffe zum Einsatz. Sie sind druckfest und geschlossenporig, sodass sie als Dämmung von erdberührten Kellerwänden oder auf Flachdächern zum Einsatz kommen. Üblich sind hierfür extrudierte Polystyrolplatten, kurz XPS. Eine erdölfreie Alternative sind Schaumglasplatten. Was Sie noch tun können: Nutzen Sie vor einer Dämmmaßnahme eine professionelle Energieberatung, um Einsparpotenziale zu ermitteln und weitere Hilfestellung zu erhalten. Fördermittel verkleinern Ihre Rechnung – siehe "Sanierung". Lassen Sie vor und nach einer Dämmmaßnahme mit einer Wärmebildaufnahme (Thermografie) die Qualität der Dämmung prüfen. Lassen Sie nach einer Dämmmaßnahme das Heizungssystem neu einstellen, damit die Anlage wieder im optimalen Bereich arbeitet. Bei der Raumtemperatur sparen? Beachten Sie unsere Tipps zu Heizen, Raumtemperatur Überwachen Sie regelmäßig den Energieverbrauch, um zu prüfen, ob die erwartete Einsparung auch eintritt. Mit umwelt- und gesundheitsverträglichen Bauprodukten – z. B. am Blauen Engel erkennbar – schützen Sie Ihre Gesundheit, die Umwelt und das ⁠ Klima ⁠. Hintergrund Umweltsituation: Der Dämmstandard bestimmt, wieviel Wärme ein Haus verliert und ihm an Heizenergie zugeführt werden muss. Die Treibhausgasemissionen der Heizenergie machen rund 17 Prozent des persönlichen CO 2 -Fußabdrucks aus und sind somit ein "Big Point" für den ⁠ Klimaschutz ⁠. Eine gute Dämmung kann diese Treibhausgasemissionen sehr stark reduzieren. Zudem spart sie Heizkosten und erhöht die Temperatur der Wandoberflächen, was wiederum die Schimmelgefahr deutlich mindert und den Wohnkomfort durch geringere Zuglufterscheinungen steigert. Da sie den Energiebedarf reduziert, trägt sie nicht zuletzt zur Versorgungssicherheit bei und ist eine wirksame Versicherung gegen steigende Energiepreise. Generell gilt: Weil die Dämmstoffkosten im Vergleich zu den Fixkosten einer energetischen Sanierung gering ausfallen, fahren Sie am besten mit dem Prinzip "Wenn schon, denn schon!" – also mit dem bestmöglichen energetischen Standard. Holen Sie sich professionelle Unterstützung für die  Sanierung in Form von Beratung, Planung, Ausführung und Baubegleitung. Gesetzeslage: Das Gebäudeenergiegesetz enthält Regelungen für die Dämmung von Gebäuden. Wird ein Haus umfassend saniert, begrenzt das Gesetz den zulässigen Bedarf an nicht-erneuerbarer ⁠ Primärenergie ⁠ und die Wärmeverluste durch die Gebäudehülle. Wird nur ein einzelnes Bauteil erneuert, müssen Anforderungen an den Wärmedurchgang (U-Werte) eingehalten werden. Das Gesetz bestimmt außerdem, wann die obersten Geschossdecken nachträglich gedämmt werden müssen. Dass die Anforderungen des Gesetzes eingehalten wurden, müssen Bauherr oder Eigentümer nachweisen. Für umfassende Sanierung geschieht dies mittels Erfüllungserklärung, die der nach Landesrecht zuständigen Behörde vorzulegen ist. Für einzelne Sanierungsmaßnahmen muss der zuständigen Behörde auf Verlangen eine Unternehmererklärung vorgelegt werden, die die ausführende Firma ausstellt. Neben gesetzlichen Vorschriften gibt es auch Fördermittel für Beratung, Dämmmaßnahmen und Baubegleitung. Informationen zu weiteren gesetzlichen Regelungen, Beratungs- und Fördermöglichkeiten finden Sie unter Sanierung . Marktbeobachtung und Technik: Häufig bei der Außendämmung eingesetzte Systeme sind Wärmedämmverbundsysteme (WDVS) und die sogenannte hinterlüftete Fassade. Wärmedämmverbundsysteme bestehen aus mehreren Komponenten (Dämmstoff, Klebstoff, Dübel, Armierungsgewebe und Außenputz). Sie können direkt auf dem Altputz befestigt werden, nachdem der lose Putz entfernt wurde. Um Biozidauslaugung aus Fassaden in Grund- und Oberflächengewässer zu verringern, empfiehlt das ⁠ UBA ⁠ WDVS mit Außenputzen ohne Algizide und Fungizide. Solche WDVS dürfen den Blauen Engel tragen. Eine hinterlüftete vorgehängte Fassade ist eine an der mit Dämmstoff verkleideten Außenwand aufgehängte Verkleidungsebene. Ein Luftspalt zwischen Dämmung und Außenverkleidung dient der Hinterlüftung, und sorgt für den Abtransport von Feuchtigkeit. Die Konstruktion bietet zudem einen guten Witterungsschutz, hohe Gestaltungsfreiheit und die Integration zusätzlicher Funktionen wie von Photovoltaik. Von Nachteil kann im Einzelfall die im Vergleich zum WDVS etwas höhere Wandstärke bei gleicher Dämmstoffdicke sein. Der U-Wert (ehemals k-Wert) ist die aktuelle Bezeichnung für den Wärmedurchgangskoeffizienten. Er gibt an, wie viel Wärme in Watt [W] pro Quadratmeter Fläche [m²] je Grad Temperaturdifferenz (⁠ Kelvin ⁠ [K]) durch ein Bauteil fließt. Die Einheit ist W/(m²K). Je kleiner der U-Wert, desto weniger Wärme (und damit Energie) geht verloren, desto besser dämmt das betreffende Bauteil. Neben der Stärke bestimmt insbesondere die Wärmeleitfähigkeit den U-Wert eines Bauteils. Die Wärmeleitfähigkeit (auch: λ "Lambda") beschreibt, wie viel Wärme ein Material transportiert, ausgedrückt pro Grad Temperaturdifferenz und Meter Bauteilstärke als W/(m*K). Wärmebrücken sind Bauteile mit einem lokal geringeren U-Wert als die umgebenden Bauteile. Dadurch kühlen sie im Winter schneller aus. Das erhöht den Energiebedarf und kann zu Tauwasserbildung führen, was wiederum die Schimmelpilzbildung fördert. Unabhängig von der Art der Wanddämmung sind Wärmebrücken unbedingt zu vermeiden. Ursache dafür sind unter anderem Baufehler und bauphysikalisch falsche Konstruktionen. Wärmebrücken können z. B. ober- und unterhalb der Raumdecken, im Bereich der Balkone, bei ungedämmten Fensterlaibungen sowie in Raumecken auftreten. Wärmebrücken lassen sich mit einer Thermografieaufnahme mit Wärmebildkamera erkennen. Im Winter deuten auf Dächern die Stellen auf Wärmebrücken hin, an denen der Schnee schneller schmilzt. Dämmstoffe und Anwendungsgebiete : Die am häufigsten verwendeten Dämmstoffe sind Mineralwolle und extrudiertes Polystyrol (EPS). Dämmstoffe aus natürlichen Materialien haben noch immer einen kleinen Marktanteil. Dabei zählen Holzfasern und Zellulose zu den gebräuchlichsten Materialien. Die Wärmeleitfähigkeit der meisten klassischen Dämmstoffe liegt bei rund 0,030 bis 0,040 W/(m*K). Darüber hinaus gibt es Hochleistungsdämmstoffe für schwierige Stellen, zum Beispiel Vakuumisolationspaneele mit einer Wärmeleitfähigkeit unter 0,010 W/(m*K) und Aerogele, die als Platte, Granulat oder Putz verfügbar sind, mit Wärmeleitfähigkeit von 0,015 bis 0,020 W/(m*K). Fenster bestehen zu 65 bis 85 Prozent aus der Verglasung. Den besten Wärmeschutz bieten heute Dreischeiben-Wärmeschutz-Verglasungen. Gegenüber Zweischeiben-Wärmeschutzglas können die Wärmeverluste so fast halbiert werden. Für die Dämmwirkung sorgen die dritte "Scheibe", eine wärmereflektierende Metallbedampfung auf zwei Scheibeninnenoberflächen und eine isolierende Edelgasfüllung. Vakuum-Verglasungen mit nur zwei Scheiben und einem dazwischen liegenden Vakuum erreichen eine ähnliche Dämmwirkung; sie sind viel schmaler, allerdings auch teurer. Angenehmer Nebeneffekt eines Fensters mit sehr gutem Wärmeschutz: Die Temperatur an der Innenseite der Verglasung ist so hoch, dass keine kalte Zugluft mehr entsteht. In der Regel verbessern neue Fenster auch den Schallschutz. Der U-Wert beschreibt die Wärmeverluste eines Fensters durch die Verglasung (U g ), durch den Rahmen (U f ) oder – das ist der ausschlaggebende Kennwert – durch das gesamte Fenster (U W ), ermittelt nach EN 10077. Je niedriger der U W -Wert, desto besser. Zwischen Verglasung und Rahmen können erhöhte Wärmeverluste auftreten. Daher sollte auch der ψ g -Wert [W/Km] (sprich: "Psi"), der diese Wärmebrücke beschreibt, möglichst niedrig sein. Der g-Wert, der Sonnenenergiedurchlassgrad in Prozent, sagt aus, wie viel der eingestrahlten Sonnenenergie in Form von Licht und Wärme durch das Fenster in den dahinter gelegenen Raum gelangt. Je höher der g-Wert, desto mehr Sonnenwärme kann im Raum genutzt werden. Das ist im Winter wichtig, weil es teure Heizenergie einspart. Im Sommer aber sollte der g-Wert möglichst niedrig sein, damit der Raum nicht überhitzt: Mittel der Wahl ist ein außen liegender Sonnenschutz.

Überblick zur Holzverbrennung

Die Beliebtheit von Kaminöfen ist hoch. Ein Kaminofen ist nicht nur ein Sinnbild für Gemütlichkeit, sondern bietet Wärme unabhängig von Gas, Öl oder Stromlieferungen. Die Energiekrise sorgt aktuell mit steigenden Gas- und Heizölpreisen sowie der Sorge um eine unzureichende Heizversorgung im Winter zu einer erhöhten Nachfrage von Kaminöfen. Der Verkauf hat stark zugenommen, so dass Ofenbauer und Installateure lange Wartelisten für Ihre Aufträge haben. Gemäß den Erhebungen der Schornsteinfeger-Innung gab es im Jahr 2021 in Berlin ca. 148.000 sogenannte Einzelraumfeuerungsanlagen. Einzelraumfeuerungsanlagen, wie Kaminöfen, heizen nur einen Raum und nicht die ganze Wohnung und werden mit festen Brennstoffen (Holz oder Kohle) betrieben. In der Abbildung ist die Aufteilung der ausschließlich oder überwiegend mit Scheitholz betriebenen insgesamt 115.160 Einzelraumfeuerungsanlagen nach Berliner Bezirken dargestellt. Durch die Verbrennung von Holz können erhebliche Mengen von Luftschadstoffen freigesetzt werden, die die Nachbarschaft beeinträchtigen und zu Beschwerden führen. Dies macht sich vor allem in der kalten Jahreszeit bemerkbar. Zum einen wird mehr geheizt, zum anderen treten auch öfter austauscharme Wetterlagen auf, bei denen die Verdünnung der Schadstoffe durch geringe Windgeschwindigkeiten und Temperaturinversionen (kalte Luft am Boden, etwas wärmere Luft in der Höhe) erschwert wird. Das bedeutet: Wenn abends der Wind schwächer wird, dann kommen die Abgase besonders konzentriert in der Nachbarschaft an. Bei der Verbrennung von Scheitholz entstehen gesundheitsschädliche Verbrennungsprodukte wie Partikel (PM), polyzyklische aromatische Kohlenwasserstoffe (PAK), Kohlenmonoxid (CO), Stickoxide (NO X ), Schwefeldioxid (SO 2 ), chlorhaltige Verbindungen, flüchtige organische Verbindungen (VOC) sowie klimaschädliches Methan, Lachgas und Ruß. Diese Stoffe gelangen über den Schornstein in die Außenluft. Die Verbrennung von Holz (und Kohle) verursacht zudem erheblich mehr Partikel als andere Brennstoffe. Gemäß dem Umweltbundesamt emittiert ein neuer Kaminofen genauso viel Partikel (ca. 500 Milligramm) in einer Stunde wie der Motor eines modernen Diesel-Pkw (EURO 6) bei einer 100 km langen Fahrt. Partikel können Bronchitis, asthmatische Anfälle oder Erkrankungen des Herz-Kreislauf-Systems verursachen. In der Tabelle sind die Heizwerte der einzelnen Brennstoffe, also die Mengen an Wärmeenergie, die bei der Verbrennung entstehen, gegenübergestellt. Beim Vergleich wird klar, dass Holz den Brennstoff mit dem geringsten Heizwert darstellt. Je höher der Heizwert eines Brennstoffs, desto geringer der Verbrauch. Der Heizwert kann somit auch einen entscheidenden Einfluss auf die Heizkosten haben. Ebenfalls dargestellt sind die durchschnittlichen Emissionsfaktoren von einigen relevanten Schadstoffen, die bei der Verbrennung der aufgeführten Brennstoffe bezogen auf die dabei freiwerdende Energie entstehen. Hier zeigt sich, dass bei Heizöl und Gas weniger Luftschadstoffe und Treibhausgase emittiert werden als bei Holz. Der Unterschied tritt bei Staubemissionen sehr deutlich hervor. Die Emissionsfaktoren für Feinstaub beim Einsatz von Gas sind fast vernachlässigbar, beim Einsatz von Öl moderat, bei Kohle und Holz um einen Faktor von etwa 100 erhöht. Die Heizperiode von 9 Monaten im Jahr entspricht umgerechnet 270 Heiztagen. Bei der Annahme von 3 Heizstunden / Tag ergeben sich insgesamt 810 Heizstunden. Der Heizwert von Brennholz beträgt 4,2 kWh/kg. Bei einem Ofen mit einer Nennwärmeleistung von 6 kW ergibt sich damit ein Holzverbrauch von 1,4 kg/h. Wird noch ein Wirkungsgrad von 80 % berücksichtigt, erhöht sich der Holzverbrauch auf etwa 1,8 kg/h. Multipliziert mit der Anzahl von 810 Heizstunden im Jahr sind etwa 1.460 kg Brennholz je Heizperiode erforderlich. Brennholz wird in Raummetern berechnet. Ein Raummeter ist ein ordentlich geschichteter Holzstapel mit einem Volumen von einem Kubikmeter inklusive einem Holraum- bzw. Luftanteil von ca. 30 %. Ein Raummeter Buchenholz mit einer Feuchte von 20 % wiegt ca. 530 kg bzw. ca. 0,5 t. Pro Jahr beträgt der Brennholzanteil damit etwa 2,8 Raummeter Buchenholz. Dies entspricht ungefähr einer Buche mit einem Stammdurchmesser von 40 cm und einer Wuchshöhe von 25 m. Um diese Wachstumshöhe zu erreichen braucht die Buche ca. 80 Jahre. Geht man von diesem kontinuierlichen Verbrauch für alle in Berlin mit Scheitholz betriebenen Einzelraumfeuerungsanlagen aus, wurden im Jahr 2021 rechnerisch etwa 115.160 Bäume zur Wärmeversorgung verbrannt. Dafür müssen in einem Jahr Bäume auf einer von ca. 770 Hektar abgeholzt werden, was in etwa einem Sechstel der Waldfläche des Berliner Grunewalds gleichkommt. Alternativ entsprechen 1.460 kg Brennholz etwa 515 kg bzw. 606 l Heizöl mit einem Heizwert von 11,9 kWh/kg oder ca. 479 kg Erdgas mit einem Heizwert von 12,8 kWh/kg. Partikel stammen aus einer Vielzahl von Quellen. Der Anteil der Holzverbrennung am gesamten Berliner Partikelausstoß kann dem sogenannten Emissionskataster entnommen werden Emissionskataster Das Emissionskataster ist ein räumliches Verzeichnis der ausgestoßenen Menge einzelner Quellgruppen von Luftschadstoffen über ein Jahr. Insgesamt werden in Berlin etwa 2.500 Tonnen Partikel pro Jahr emittiert. Dabei hat der Straßenverkehr mit 626 Tonnen pro Jahr den größten Anteil. Er enthält nicht nur den zurückgehenden Partikelausstoß aus dem Auspuff, sondern auch die inzwischen dominierenden, durch Abrieb von Fahrbahn, Reifen und Bremsen sowie durch Aufwirbelung an die Luft abgegebenen Partikel. Vergleicht man die reinen Abgasemissionen des Kfz-Verkehrs von 110 Tonnen pro Jahr mit den Partikelemissionen von 186 Tonnen pro Jahr aus der Holzverbrennung zeigt sich, dass die Quelle Holzverbrennung dennoch nicht unwesentlich ist. Um den Beitrag der Holzverbrennung an der gemessenen Partikelbelastung in der Atmosphäre (Immissionsbelastung) zu bestimmen, können auf Filtern gesammelte Partikel auf ihre chemischen Eigenschaften hin untersucht werden. Ein eindeutiger Indikator für Holzverbrennung ist der Stoff Levoglucosan. Levoglucosan entsteht bei der Verbrennung von Cellulose und kann daher nicht aus Verbrennungsprozessen der Industrie oder des Verkehrs stammen. Da seine Bestimmung jedoch sehr aufwendig ist, werden in Berlin seit 2017 automatische Messgeräte (Aethalometer) zur Erfassung der quellspezifischen Lichtabsorbtion verwendet (siehe Clemen, et al., 2018). Die Absorptionseigenschaften des Rußes unterscheiden sich nämlich, je nachdem ob sie aus der Holzverbrennung (Biomasse) oder aus der Verbrennung fossiler Brennstoffe wie Dieselkraftstoff stammen. Die empirisch aus der Kohlenstoffbilanzierung ermittelten Beiträge der Holzverbrennung haben seit den letzten Jahren an Tagen mit Überschreitung des Tagesgrenzwertes für Partikel PM 10 (Tagesmittelwerte über 50 Mikrogramm pro Kubikmeter) einen gleichbleibenden mittleren Anteil von etwa 12 % an den PM 10 -Immissionen. Die Abbildung zeigt für die Jahre 2017 bis 2019 an der Messstation Frankfurter Allee die Zahl der Tage mit Überschreitungen des Tagesgrenzwerts (PM 10 > 50 µg/m 3 ) und wie oft dieser überschritten worden wäre, wenn keine Holzverbrennung stattgefunden hätte. Es ist zu erkennen, dass die Anzahl der Überschreitungstage in den letzten Jahren kontinuierlich gesunken ist – allerdings fast nur der Anteil ohne Holzverbrennung. Ohne die Beiträge aus der Holzverbrennung wäre die Anzahl der Überschreitungstage wesentlich kleiner. Auch wenn die gesetzlich zulässige Anzahl an Überschreitungstagen von 35 seit 2016 eingehalten wird, sollte die Belastung nach den neuen verschärften Richtwerten der Weltgesundheitsorganisation (WHO(World Health Organisation.)) wesentlich geringer sein. Um negative Auswirkungen auf die menschliche Gesundheit weitgehend zu vermeiden, empfiehlt die WHO die Zahl der Tageswertüberschreitungen für Feinstaubpartikel auf drei zu begrenzen. Berlin hat sich langfristig zum Ziel gesetzt, die Luftqualität in Richtung der WHO-Richtwerte zu verbessern. Ohne Maßnahmen zur Verminderung von Partikelemissionen bei der Holzverbrennung wird dieses Ziel nicht erreichbar sein. Richtig Heizen mit Holz Regulierung von Kaminöfen Sollten Sie sich von Holzfeuerungen in der Nachbarschaft belästigt fühlen, ist es zunächst sinnvoll, ein offenes Gespräch mit dem verantwortlichen Nachbarn zu führen. Sollten Sie Hinweise haben, dass ungeeignete Brennstoffe oder sogar Müll verbrannt werden, können Sie bei Nichteinsicht und Wiederholung des verantwortlichen Nachbarn die zuständige Behörde informieren . Ansprechpartner sind das Ordnungs- oder das Umweltamt in Ihrem Bezirk .

Ökologische Bewertung textiler Fasern – von „klassischen“ Fasern über Recyclingfasern bis hin zu innovativen und wiederentdeckten Fasern

Der Bericht analysiert die Umweltauswirkungen und Optimierungsansätze der in der Textilindustrie herkömmlich eingesetzten Fasern (z. B. Baumwolle, regenerierte Zellulosefasern, Polyester), mit dem Ziel, die faserspezifischen Anforderungen des Blauen Engel für Textilien (DE-UZ 154) zu überarbeiten. Der Bericht adressiert auch den Status quo der Kreislaufwirtschaft im Textilsektor, um die Anforderungen zu Recyclingfasern anzupassen. Auch wiederentdeckte Fasern (wie z. B. Brennnessel), neue bzw. innovative Fasern, Reste aus der Agrar- und Lebensmittelproduktion oder der Einsatz von biogenen Ressourcen für die Herstellung von synthetischen Fasern wurden eingehend betrachtet. Diese Erkenntnisse flossen in den überarbeiteten Blauen Engel für Textilien.

Leitfaden zur umweltfreundlichen öffentlichen Beschaffung: Bettwaren und Bettwäsche - Neufassung 2023

Die Textilindustrie beinhaltet eine große Zahl von Teilsektoren, die den gesamten Fertigungszyklus von der Rohstofferzeugung (Fasern und Filamente, Naturfasern) über Halbfertigprodukte (Garne, Wirkwaren inkl. zugehöriger Prozesse) bis hin zu den Endprodukten einschließt. Für die im Leitfaden zur umweltfreundlichen öffentlichen Beschaffung von Bettwaren und Bettwäsche empfohlenen Umweltkriterien wurde der gesamte Fertigungszyklus betrachtet und Anforderungen für die umweltrelevanten Prozesse erarbeitet. Neben Naturfasern berücksichtigt der Leitfaden wegen ihrer Bedeutung auf dem Textilmarkt auch chemische, regenerierte Zellulosefasern und Recyclingfasern. Zusätzlich werden auch Anforderungen an Daunen und Federn formuliert. Außerdem gibt es ein umfangreiches Set an Haltbarkeitsanforderungen. Veröffentlicht in Leitfäden und Handbücher.

Leitfaden zur umweltfreundlichen öffentlichen Beschaffung: Bekleidungstextilien und Wäsche - Neufassung 2023

Die Textilindustrie beinhaltet eine große Zahl von Teilsektoren, die den gesamten Fertigungszyklus von der Rohstofferzeugung (Fasern und Filamente, Naturfasern) über Halbfertigprodukte (Garne, Wirkwaren inkl. zugehöriger Prozesse) bis hin zu den Endprodukten einschließt. Für die im Leitfaden zur umweltfreundlichen öffentlichen Beschaffung von Bekleidungstextilien und Wäsche empfohlenen Umweltkriterien wurde der gesamte Fertigungszyklus betrachtet und Anforderungen für die umweltrelevanten Prozesse erarbeitet. Neben Naturfasern berücksichtigt der Leitfaden wegen ihrer Bedeutung auf dem Textilmarkt auch chemische, regenerierte Zellulosefasern und Recyclingfasern. Zusätzlich werden auch Anforderungen an Membrane und Laminate sowie an Beschichtungen gestellt. Außerdem gibt es ein umfangreiches Set an Haltbarkeitsanforderungen. Soziale Anforderungen finden ebenfalls Berücksichtigung im Leitfaden. Veröffentlicht in Leitfäden und Handbücher.

Stable carbon isotope ratios of tree-ring cellulose from the site network of the EU-Project ‘ISONET’

Other

1 2 3 4 5104 105 106