API src

Found 133 results.

Related terms

Biokunststoffe nicht besser

Verpackungen aus bioabbaubaren Kunststoffen sind denen aus herkömmlichen Kunststoffen nicht überlegen Biologisch abbaubare Kunststoffe für Verpackungen, die aus nachwachsenden Rohstoffen hergestellt werden, haben insgesamt keinen ökologischen Vorteil. Durch den Anbau und die Verarbeitung von Pflanzen für diese Verpackungen versauern Böden und eutrophieren Gewässer stärker als durch die Herstellung herkömmlicher Kunststoffverpackungen. Zudem entstehen höhere Feinstaubemissionen. Auch die vermehrt angebotenen Bioplastiktüten haben damit keinen Umweltvorteil. Zu diesem Ergebnis kommt eine Studie im Auftrag des Umweltbundesamtes. Diese sollte vor allem ermitteln, ob die Erleichterungen in der Verpackungsverordnung für bioabbaubare Kunststoffverpackungen aus ökologischer Sicht weiterhin gerechtfertigt sind. Eine entsprechende Sonderregelung läuft Ende des Jahres aus. „Verpackungen auf der Basis von so genannten Biokunststoffen haben unter dem Strich keine Umweltvorteile. Die Klimabilanz von Biokunststoffen ist zwar günstiger, dafür gibt es Nachteile bei anderen Umweltbelastungen,“ sagt Jochen Flasbarth, Präsident des Umweltbundesamtes (UBA). „Die Ergebnisse sprechen dafür, die Sonderregelung für solche Verpackungen, wie etwa die Befreiung von der Rücknahmepflicht des Handels, nicht zu verlängern.“ Betrachtet man den gesamten Lebensweg biologisch abbaubarer Kunststoffverpackungen aus nachwachsenden Rohstoffen - von der Herstellung bis zur Entsorgung - schneiden diese nicht günstiger als Verpackungen herkömmlicher Kunststoffe ab. Der CO 2 -Ausstoß fällt zwar geringer aus, ebenso der Verbrauch von Erdöl. In anderen Umweltbereichen kommt es aber zu größeren Belastungen - vor allem durch Düngemittel. Verwendet werden diese für die Pflanzen, aus denen die Kunststoffe gewonnen werden. Sie führen zur ⁠ Eutrophierung ⁠ von Gewässern und sauren Böden, und zwar in einem in stärkerem Umfang als bei der Herstellung herkömmlicher Kunststoffe. Damit ist auch klar, dass die derzeit vielfach angepriesenen Bioplastiktüten keine Umweltvorteile gegenüber herkömmlichen Plastiktüten bieten. Wirklich umweltfreundlich sind nur Mehrwegtaschen, etwa Stoffbeutel und Taschen aus anderen langlebigen Materialien. Verpackungen aus biologisch abbaubaren Kunststoffen konnten sich im Einzelhandel auch nicht durchsetzen. Im Bezugszeitraum der Studie 2009 hatten die Biokunststoffverpackungen einen Marktanteil von maximal 0,5 Prozent. Insgesamt wurden in Deutschland in 2009 2,645 Millionen Tonnen Kunststoffverpackungen verbraucht. ⁠ UBA ⁠-Präsident Flasbarth: „Das Umweltbundesamt empfiehlt, zukünftig Biokunststoffe nur dann zu fördern, wenn deren ökologische Überlegenheit im Vergleich zu herkömmlichen Kunststoffen belegt ist.“ Auch neuartige Kunststoffe wie Bio-Polyethylen, die unter anderem aus Zuckerrohr hergestellt werden, erfüllen diese Kriterien noch nicht in ausreichendem Maße. Ihre Herstellung muss noch weiter optimiert werden. Einen wesentlichen Beitrag kann dabei auch die Verwendung pflanzlicher Reststoffe leisten. Künftig könnten solche Kunststoffe aber Vorteile gegenüber herkömmlichen Kunststoffen aufweisen. In geringen Mengen werden sie derzeit für Flaschen und Tüten eingesetzt. Biokunststoffe sollten nach ihrem Gebrauch einfach und ohne großen Energieaufwand recycelt werden können. Für Verpackungen aus biologisch abbaubaren Kunststoffen gilt nach § 16 Absatz 2 der Verpackungsverordnung derzeit eine Sonderregelung, die ihre Markteinführung erleichtern soll: Hersteller und Vertreiber solcher Verpackungen müssen sich nicht an den vorhandenen Rücknahmesystemen für Verpackungen beteiligen. Als Getränkeverpackungen unterliegen sie auch nicht der Pfandpflicht, wenn sie zu mindestens 75 Prozent aus nachwachsenden Rohstoffen hergestellt sind. Vielmehr ist es Herstellern und Vertreibern überlassen, wie sie am effektivsten die von der Verpackungsverordnung geforderte möglichst hohe Verwertungsquote sicherstellen. Diese Erleichterungen sind bis zum 31. Dezember 2012 befristet. Die Studie des Institutes für Energie-und Umweltforschung Heidelberg (ifeu) im Auftrag des UBA, sollte klären, ob dies aus Sicht des Umweltschutzes weiter gerechtfertigt sind. Jochen Flasbarth: „Die Studie zeigt, dass sich die Sonderregeln für Biokunststoffe in § 16 Absatz 2 der Verpackungsverordnung nicht bewährt haben. Die Ergebnisse des Forschungsprojekts sprechen dafür, die Sonderregelungen für Verpackungen aus diesen Kunststoffen nicht fortzuführen.“ Die Studie „Untersuchung der Umweltwirkungen von Verpackungen aus biologisch abbaubaren Kunststoffen“ hat insgesamt 85 Ökobilanzen, Studien und Fachartikel ausgewertet. Dabei wurden alle Umwelt bezogenen Vor- und Nachteile der jeweiligen Verpackungen berücksichtigt. Darüber hinaus analysiert die Studie die Verwendung von Verpackungen im Einzelhandel, wobei sie die aktuelle Situation, aber auch Prognosen mit einbezieht.

Biomasse: Beste Ökobilanz bei Nutzungskaskade

Hemmnisse für stoffliche Biomassenutzung abbauen Bioenergie, insbesondere Biokraftstoffe, werden kontrovers diskutiert – Bietet die stoffliche Nutzung von Biomasse in Form von Baumaterialien, Biokunststoffen oder Schmierstoffen also eine bessere Alternative? Diese Frage wurde jetzt erstmalig umfassend in einem Forschungsprojekt im Auftrag des Umweltbundesamtes (UBA) untersucht. Die Ergebnisse zeigen: Werden nachwachsende Rohstoffe vor einer energetischen Nutzung stofflich genutzt, lassen sich fossile Rohstoffe einsparen, Treibhausgasemissionen vermindern und die Wertschöpfung steigern. So soll Holz in einer längeren Verwertungskette zuerst als Baumaterial oder für die Holzwerkstoffindustrie im Anschluss zum Beispiel für Möbel genutzt werden und erst danach als Holzpellet für die Energiegewinnung. Diese Kaskadennutzung sollte in den Mittelpunkt einer langfristigen Strategie für eine ressourceneffiziente und nachhaltige Biomassenutzung gestellt werden. Holz, Stärke aus Mais und Weizen, Pflanzenöle und Zucker zählen zu den wichtigsten stofflich genutzten biogenen Rohstoffen. Eine verstärkte stoffliche Nutzung nachwachsender Rohstoffe in Deutschland hätte erhebliche ökologische und ökonomische Potentiale  hinsichtlich  Treibhausgasminderung, Wertschöpfung und Beschäftigung, so die Projektergebnisse aus den Szenarien. In diesen wurde angenommen, dass die in Deutschland bisher energetisch genutzte ⁠ Biomasse ⁠ in Gänze stofflich genutzt wird. Ökobilanzen zeigen, dass die stoffliche Nutzung von Biomasse viele Parallelen zur energetischen Biomassenutzung hat, allerdings ist die Kaskadennutzung des Rohstoffs, bei der sich die energetische an die stoffliche Nutzung anschließt, einer rein energetischen Nutzung weit überlegen. Auch ökonomisch hat die stoffliche Nutzung Vorteile. Sie schafft, bezogen auf die gleiche Menge an Biomasse, die fünf- bis zehnfache Bruttowertschöpfung und ebensolche Beschäftigungseffekte. Hauptgrund sind die meist langen und komplexen Wertschöpfungsketten. Die stoffliche Biomassenutzung wird derzeit nicht finanziell gefördert.  Gegenüber der energetischen Biomassenutzung ist sie deshalb kaum wettbewerbsfähig. Verschiedenste Programme und gesetzliche Regelungen begünstigen den Anbau von Energiepflanzen, deren Verarbeitung und direkten Einsatz zur Energiegewinnung – unter anderem durch Steuervorteile. Das steigert die Nachfrage nach Biomasse und folglich deren Preis, was wiederum höhere Pacht- und Bodenpreise nach sich zieht. Eine ökologisch und ökonomisch sinnvolle Kaskadennutzung wird so verhindert. Bei dieser würde Holz in einer längeren Recyclingkette idealerweise zuerst als Baumaterial, dann für Spanplatten, im Anschluss für Möbel und danach für kleine Möbel wie Regale genutzt werden.  Erst dann, wenn es sich nicht mehr für Holzprodukte eignet, kann es auch für die Energiegewinnung eingesetzt werden. ⁠ UBA ⁠-Vizepräsident Thomas Holzmann: „Die beste Form Biomasse einzusetzen, ist die Kaskadennutzung.  Holz oder andere pflanzliche Stoffe sollen so lange wie möglich stofflich genutzt werden, für Bauholz oder Möbel und anschließend für neue Produkte recycelt werden. Erst die Rest- und Abfallstoffe dürfen für die Energiegewinnung eingesetzt werden. Das Umweltbundesamt empfiehlt daher, vergleichbare Rahmenbedingungen für stoffliche und energetische Biomassenutzung zu schaffen und den Ausbau der Kaskadennutzung voranzutreiben. Das ist die optimale, ressourceneffizienteste Verwertung der Biomasse.“ Die  bestehenden Wettbewerbsverzerrungen zuungunsten der stofflichen Nutzung von Biomasse lassen sich durch unterschiedliche Maßnahmen verringern. Beispielsweise sollte in der Erneuerbaren-Energie-Richtlinie der EU (RED) und im Erneuerbaren-Energien-Gesetz (EEG) die Kaskadennutzung deutlich besser gestellt werden als die direkte energetische Nutzung frischer Biomasse. Ein weiteres Beispiel ist das Marktanreizprogramm (MAP) für Erneuerbare Energien, das die Wärmeerzeugung durch Biomasseanlagen fördert. Würde diese Förderung schrittweise gekürzt werden und würde dadurch die Nachfrage nach Scheitholz-, Hackschnitzel- und Pelletheizungen sinken, ließe sich die Konkurrenz um Holz zwischen dem stofflichen und energetischen Sektor deutlich entschärfen. Um das zu erreichen, sollte auch die Umsatzsteuer für Brennholz erhöht werden. Sie liegt derzeit bei einem reduzierten Satz  von sieben Prozent. In Deutschland werden derzeit etwa 90 Millionen Tonnen an nachwachsenden Rohstoffen genutzt. Knapp die Hälfte davon (52 %) wird stofflich genutzt, die andere Hälfte (48 %) energetisch. Mengenmäßig ist Holz der wichtigste nachwachsende Rohstoff. Es wird in der Säge- und Holzwerkstoffindustrie eingesetzt, als Bauholz für Gebäude oder die Möbelproduktion sowie in der Papier- und Zellstoffindustrie. Die Oleochemie und die chemische Industrie verarbeiten Pflanzenöle, z.B. zu Farben, Lacken und zu Schmierstoffen sowie stärke- und zuckerhaltige Pflanzen zu Tensiden und biobasierten Kunststoffen. Die Anbaufläche für nachwachsende Rohstoffen, die stofflich genutzt werden, beläuft sich weltweit auf 2,15 Milliarden Hektar. Am meisten wird Holz angebaut, die Stärkepflanzen Mais und Weizen, die Ölpflanzen Ölpalme und Kokosnuss, das Zuckerrohr sowie Baumwolle und Naturkautschuk. Weitere Informationen: Das Forschungsprojekt „Ökologische Innovationspolitik – Mehr Ressourceneffizienz und ⁠ Klimaschutz ⁠ durch nachhaltige stoffliche Nutzungen von Biomasse“ wurde im Auftrag des Umweltbundesamtes  durchgeführt und mit Mitteln des Bundesumweltministeriums (⁠ BMUB ⁠) gefördert. Das Projekt wurde unter Federführung der nova-Institut GmbH, Hürth, in Kooperation mit weiteren Partnern von 2010 bis 2013 bearbeitet. F+E Ökologische Innovationspolitik – Mehr Ressourceneffizienz und Klimaschutz durch nachhaltige stoffliche Nutzungen von Biomasse (FKZ 37 1093 109). Der Forschungsbericht kann unter der Kennnummer 001865 aus der Bibliothek des Umweltbundesamtes ausgeliehen werden.

Fermenter\Bio-EtOH-ZR-iLUC25% (Acker)-BR-2030/en

Fermenter für Bio-EtOH uas Zuckerrohr in Brasilien (Sao-Paulo-Region), Daten für energieautarkes System mit Prozesswärme + Hilfsstrom aus Bagasse, alles Daten aus #1, Kosten nach #2 Data from Macedo 2004: ethanol yield 86 l/t cane (best case: 92 l/t, i.e. 22,2% using yield of 1,96 GJ/t cane) NCV ethanol 26,8 MJ/kg i.e. 21,3 MJ/l for density of 0,794 kg/l NCV sugacane 8,82 MJ/kg i.e. GJ/t i.e. yueld 1,83 GJ/t cane 20,7% Transport to Europe: cost estimate 25 Euro/t NCV ethanol 7,4 MWh/t 21,3 MJ/l 3,4 Euro/MWh 0,34 c/kWh 1,2 Euro/GJ Coelho (GEF-STAP presentation, Delhi 2005): best new plants ethanol yield 83 l/t sugarcane investment 60 million US$2005 for 2,16 mio t/a sugarcane plant 50 mio Euro-2005 8000 h/a operation Inflation 2%/a --> 10% less in Euro 2000 4228602,62 GJ/a i.e. 45 mio Euro-2000 1174611,84 MWh/a 306 Euro/kW-th 147 MW-th angesetzt: 300 Euro/kW-th fixed costs (O&M) 2,50% pro Jahr i.e. 7,5 Euro/kW-th*a sugarcane costs: 14 $/t = 11,67 Euro-2005/t = 10,5 Euro-2000/t conversion rate Euro - $ 1,2 Auslastung: 8300h/a Brenn-/Einsatzstoff: Brennstoffe-Bio-fest gesicherte Leistung: 100% Jahr: 2030 Lebensdauer: 15a Leistung: 150MW Nutzungsgrad: 20,7% Produkt: Brennstoffe-Bio-flüssig Verwendete Allokation: Allokation nach Energieäquivalenten

Fermenter\Bio-EtOH-ZR-iLUC50% (Acker)-BR-2030/en

Fermenter für Bio-EtOH uas Zuckerrohr in Brasilien (Sao-Paulo-Region), Daten für energieautarkes System mit Prozesswärme + Hilfsstrom aus Bagasse, alles Daten aus #1, Kosten nach #2 Data from Macedo 2004: ethanol yield 86 l/t cane (best case: 92 l/t, i.e. 22,2% using yield of 1,96 GJ/t cane) NCV ethanol 26,8 MJ/kg i.e. 21,3 MJ/l for density of 0,794 kg/l NCV sugacane 8,82 MJ/kg i.e. GJ/t i.e. yueld 1,83 GJ/t cane 20,7% Transport to Europe: cost estimate 25 Euro/t NCV ethanol 7,4 MWh/t 21,3 MJ/l 3,4 Euro/MWh 0,34 c/kWh 1,2 Euro/GJ Coelho (GEF-STAP presentation, Delhi 2005): best new plants ethanol yield 83 l/t sugarcane investment 60 million US$2005 for 2,16 mio t/a sugarcane plant 50 mio Euro-2005 8000 h/a operation Inflation 2%/a --> 10% less in Euro 2000 4228602,62 GJ/a i.e. 45 mio Euro-2000 1174611,84 MWh/a 306 Euro/kW-th 147 MW-th angesetzt: 300 Euro/kW-th fixed costs (O&M) 2,50% pro Jahr i.e. 7,5 Euro/kW-th*a sugarcane costs: 14 $/t = 11,67 Euro-2005/t = 10,5 Euro-2000/t conversion rate Euro - $ 1,2 Auslastung: 8300h/a Brenn-/Einsatzstoff: Brennstoffe-Bio-fest gesicherte Leistung: 100% Jahr: 2030 Lebensdauer: 15a Leistung: 150MW Nutzungsgrad: 20,7% Produkt: Brennstoffe-Bio-flüssig Verwendete Allokation: Allokation nach Energieäquivalenten

Fermenter\Bio-EtOH-ZR-iLUC50% (Acker)-BR-2005/en

Fermenter für Bio-EtOH uas Zuckerrohr in Brasilien (Sao-Paulo-Region), Daten für energieautarkes System mit Prozesswärme + Hilfsstrom aus Bagasse, alles Daten aus #1, Kosten nach #2 Data from Macedo 2004: ethanol yield 86 l/t cane (best case: 92 l/t, i.e. 22,2% using yield of 1,96 GJ/t cane) NCV ethanol 26,8 MJ/kg i.e. 21,3 MJ/l for density of 0,794 kg/l NCV sugacane 8,82 MJ/kg i.e. GJ/t i.e. yueld 1,83 GJ/t cane 20,7% Transport to Europe: cost estimate 25 Euro/t NCV ethanol 7,4 MWh/t 21,3 MJ/l 3,4 Euro/MWh 0,34 c/kWh 1,2 Euro/GJ Coelho (GEF-STAP presentation, Delhi 2005): best new plants ethanol yield 83 l/t sugarcane investment 60 million US$2005 for 2,16 mio t/a sugarcane plant 50 mio Euro-2005 8000 h/a operation Inflation 2%/a --> 10% less in Euro 2000 4228602,62 GJ/a i.e. 45 mio Euro-2000 1174611,84 MWh/a 306 Euro/kW-th 147 MW-th angesetzt: 300 Euro/kW-th fixed costs (O&M) 2,50% pro Jahr i.e. 7,5 Euro/kW-th*a sugarcane costs: 14 $/t = 11,67 Euro-2005/t = 10,5 Euro-2000/t conversion rate Euro - $ 1,2 Auslastung: 8300h/a Brenn-/Einsatzstoff: Brennstoffe-Bio-fest gesicherte Leistung: 100% Jahr: 2005 Lebensdauer: 15a Leistung: 150MW Nutzungsgrad: 20,7% Produkt: Brennstoffe-Bio-flüssig Verwendete Allokation: Allokation nach Energieäquivalenten

Fermenter\Bio-EtOH-ZR-dLUC (Acker)-BR-2005/en

Fermenter für Bio-EtOH uas Zuckerrohr in Brasilien (Sao-Paulo-Region), Daten für energieautarkes System mit Prozesswärme + Hilfsstrom aus Bagasse, alles Daten aus #1, Kosten nach #2 Data from Macedo 2004: ethanol yield 86 l/t cane (best case: 92 l/t, i.e. 22,2% using yield of 1,96 GJ/t cane) NCV ethanol 26,8 MJ/kg i.e. 21,3 MJ/l for density of 0,794 kg/l NCV sugacane 8,82 MJ/kg i.e. GJ/t i.e. yueld 1,83 GJ/t cane 20,7% Transport to Europe: cost estimate 25 Euro/t NCV ethanol 7,4 MWh/t 21,3 MJ/l 3,4 Euro/MWh 0,34 c/kWh 1,2 Euro/GJ Coelho (GEF-STAP presentation, Delhi 2005): best new plants ethanol yield 83 l/t sugarcane investment 60 million US$2005 for 2,16 mio t/a sugarcane plant 50 mio Euro-2005 8000 h/a operation Inflation 2%/a --> 10% less in Euro 2000 4228602,62 GJ/a i.e. 45 mio Euro-2000 1174611,84 MWh/a 306 Euro/kW-th 147 MW-th angesetzt: 300 Euro/kW-th fixed costs (O&M) 2,50% pro Jahr i.e. 7,5 Euro/kW-th*a sugarcane costs: 14 $/t = 11,67 Euro-2005/t = 10,5 Euro-2000/t conversion rate Euro - $ 1,2 Auslastung: 8300h/a Brenn-/Einsatzstoff: Brennstoffe-Bio-fest gesicherte Leistung: 100% Jahr: 2005 Lebensdauer: 15a Leistung: 150MW Nutzungsgrad: 20,7% Produkt: Brennstoffe-Bio-flüssig Verwendete Allokation: Allokation nach Energieäquivalenten

Fermenter\Bio-EtOH-ZR-dLUC (Acker)-BR-2010/en

Fermenter für Bio-EtOH uas Zuckerrohr in Brasilien (Sao-Paulo-Region), Daten für energieautarkes System mit Prozesswärme + Hilfsstrom aus Bagasse, alles Daten aus #1, Kosten nach #2 Data from Macedo 2004: ethanol yield 86 l/t cane (best case: 92 l/t, i.e. 22,2% using yield of 1,96 GJ/t cane) NCV ethanol 26,8 MJ/kg i.e. 21,3 MJ/l for density of 0,794 kg/l NCV sugacane 8,82 MJ/kg i.e. GJ/t i.e. yueld 1,83 GJ/t cane 20,7% Transport to Europe: cost estimate 25 Euro/t NCV ethanol 7,4 MWh/t 21,3 MJ/l 3,4 Euro/MWh 0,34 c/kWh 1,2 Euro/GJ Coelho (GEF-STAP presentation, Delhi 2005): best new plants ethanol yield 83 l/t sugarcane investment 60 million US$2005 for 2,16 mio t/a sugarcane plant 50 mio Euro-2005 8000 h/a operation Inflation 2%/a --> 10% less in Euro 2000 4228602,62 GJ/a i.e. 45 mio Euro-2000 1174611,84 MWh/a 306 Euro/kW-th 147 MW-th angesetzt: 300 Euro/kW-th fixed costs (O&M) 2,50% pro Jahr i.e. 7,5 Euro/kW-th*a sugarcane costs: 14 $/t = 11,67 Euro-2005/t = 10,5 Euro-2000/t conversion rate Euro - $ 1,2 Auslastung: 8300h/a Brenn-/Einsatzstoff: Brennstoffe-Bio-fest gesicherte Leistung: 100% Jahr: 2010 Lebensdauer: 15a Leistung: 150MW Nutzungsgrad: 20,7% Produkt: Brennstoffe-Bio-flüssig Verwendete Allokation: Allokation nach Energieäquivalenten

Fermenter\Bio-EtOH-ZR-dLUC (Acker)-BR-2030/en

Fermenter für Bio-EtOH uas Zuckerrohr in Brasilien (Sao-Paulo-Region), Daten für energieautarkes System mit Prozesswärme + Hilfsstrom aus Bagasse, alles Daten aus #1, Kosten nach #2 Data from Macedo 2004: ethanol yield 86 l/t cane (best case: 92 l/t, i.e. 22,2% using yield of 1,96 GJ/t cane) NCV ethanol 26,8 MJ/kg i.e. 21,3 MJ/l for density of 0,794 kg/l NCV sugacane 8,82 MJ/kg i.e. GJ/t i.e. yueld 1,83 GJ/t cane 20,7% Transport to Europe: cost estimate 25 Euro/t NCV ethanol 7,4 MWh/t 21,3 MJ/l 3,4 Euro/MWh 0,34 c/kWh 1,2 Euro/GJ Coelho (GEF-STAP presentation, Delhi 2005): best new plants ethanol yield 83 l/t sugarcane investment 60 million US$2005 for 2,16 mio t/a sugarcane plant 50 mio Euro-2005 8000 h/a operation Inflation 2%/a --> 10% less in Euro 2000 4228602,62 GJ/a i.e. 45 mio Euro-2000 1174611,84 MWh/a 306 Euro/kW-th 147 MW-th angesetzt: 300 Euro/kW-th fixed costs (O&M) 2,50% pro Jahr i.e. 7,5 Euro/kW-th*a sugarcane costs: 14 $/t = 11,67 Euro-2005/t = 10,5 Euro-2000/t conversion rate Euro - $ 1,2 Auslastung: 8300h/a Brenn-/Einsatzstoff: Brennstoffe-Bio-fest gesicherte Leistung: 100% Jahr: 2030 Lebensdauer: 15a Leistung: 150MW Nutzungsgrad: 20,7% Produkt: Brennstoffe-Bio-flüssig Verwendete Allokation: Allokation nach Energieäquivalenten

Fermenter\Bio-EtOH-ZR-iLUC25% (Acker)-BR-2010/en

Fermenter für Bio-EtOH uas Zuckerrohr in Brasilien (Sao-Paulo-Region), Daten für energieautarkes System mit Prozesswärme + Hilfsstrom aus Bagasse, alles Daten aus #1, Kosten nach #2 Data from Macedo 2004: ethanol yield 86 l/t cane (best case: 92 l/t, i.e. 22,2% using yield of 1,96 GJ/t cane) NCV ethanol 26,8 MJ/kg i.e. 21,3 MJ/l for density of 0,794 kg/l NCV sugacane 8,82 MJ/kg i.e. GJ/t i.e. yueld 1,83 GJ/t cane 20,7% Transport to Europe: cost estimate 25 Euro/t NCV ethanol 7,4 MWh/t 21,3 MJ/l 3,4 Euro/MWh 0,34 c/kWh 1,2 Euro/GJ Coelho (GEF-STAP presentation, Delhi 2005): best new plants ethanol yield 83 l/t sugarcane investment 60 million US$2005 for 2,16 mio t/a sugarcane plant 50 mio Euro-2005 8000 h/a operation Inflation 2%/a --> 10% less in Euro 2000 4228602,62 GJ/a i.e. 45 mio Euro-2000 1174611,84 MWh/a 306 Euro/kW-th 147 MW-th angesetzt: 300 Euro/kW-th fixed costs (O&M) 2,50% pro Jahr i.e. 7,5 Euro/kW-th*a sugarcane costs: 14 $/t = 11,67 Euro-2005/t = 10,5 Euro-2000/t conversion rate Euro - $ 1,2 Auslastung: 8300h/a Brenn-/Einsatzstoff: Brennstoffe-Bio-fest gesicherte Leistung: 100% Jahr: 2010 Lebensdauer: 15a Leistung: 150MW Nutzungsgrad: 20,7% Produkt: Brennstoffe-Bio-flüssig Verwendete Allokation: Allokation nach Energieäquivalenten

Fermenter\Bio-EtOH-ZR-iLUC50% (Acker)-BR-2010/en

Fermenter für Bio-EtOH uas Zuckerrohr in Brasilien (Sao-Paulo-Region), Daten für energieautarkes System mit Prozesswärme + Hilfsstrom aus Bagasse, alles Daten aus #1, Kosten nach #2 Data from Macedo 2004: ethanol yield 86 l/t cane (best case: 92 l/t, i.e. 22,2% using yield of 1,96 GJ/t cane) NCV ethanol 26,8 MJ/kg i.e. 21,3 MJ/l for density of 0,794 kg/l NCV sugacane 8,82 MJ/kg i.e. GJ/t i.e. yueld 1,83 GJ/t cane 20,7% Transport to Europe: cost estimate 25 Euro/t NCV ethanol 7,4 MWh/t 21,3 MJ/l 3,4 Euro/MWh 0,34 c/kWh 1,2 Euro/GJ Coelho (GEF-STAP presentation, Delhi 2005): best new plants ethanol yield 83 l/t sugarcane investment 60 million US$2005 for 2,16 mio t/a sugarcane plant 50 mio Euro-2005 8000 h/a operation Inflation 2%/a --> 10% less in Euro 2000 4228602,62 GJ/a i.e. 45 mio Euro-2000 1174611,84 MWh/a 306 Euro/kW-th 147 MW-th angesetzt: 300 Euro/kW-th fixed costs (O&M) 2,50% pro Jahr i.e. 7,5 Euro/kW-th*a sugarcane costs: 14 $/t = 11,67 Euro-2005/t = 10,5 Euro-2000/t conversion rate Euro - $ 1,2 Auslastung: 8300h/a Brenn-/Einsatzstoff: Brennstoffe-Bio-fest gesicherte Leistung: 100% Jahr: 2010 Lebensdauer: 15a Leistung: 150MW Nutzungsgrad: 20,7% Produkt: Brennstoffe-Bio-flüssig Verwendete Allokation: Allokation nach Energieäquivalenten

1 2 3 4 512 13 14