Das Projekt "Teilprojekt 9" wird vom Umweltbundesamt gefördert und von Universität Frankfurt am Main, Institut für Ökologie, Evolution und Diversität, Abteilung Aquatische Ökotoxikologie durchgeführt. Im Teilprojekt B3 des MiWa-Verbundvorhabens werden die Aufnahme sowie die biologischen Effekte von Mikroplastik (MP) in Schlüsselvertretern der aquatischen Invertebraten charakterisiert. In Anbetracht der enormen Wissenslücken in Bezug auf die Toxizität von MP in Süßwasserarten, sollen im TP folgende Hypothesen untersucht werden: (A) Sehr kleines Mikroplastik (kleiner als 10 Mikro m) passiert Epithelien und kann in das Gewebe aquatischer Invertebraten übergehen. (B) Eine Exposition mit Mikroplastik induziert Inflammation und Stressreaktionen in aquatischen Invertebraten. (C) Durch oxidative Verfahren (Ozon, Chlor, UV) bei der Wasseraufbereitung gealtertes MP hat eine veränderte Toxizität. (D) Die chronische Toxizität von schadstoffbelastetem Mikroplastik ist höher als die von reinem Mikroplastik. Eine detaillierte Beschreibung des Teilprojektes, inklusive des fachlichen Hintergrunds, des experimentellen Designs, der Zeitplanung und der zu erwartenden Projektergebnisse, liefert die angehängte Projektbeschreibung. In Arbeitspakt AP B3.1 wird die Aufnahme von selbst hergestellten, 'realistischen' MP untersucht und mit vorliegenden Daten zur Aufnahme von sphärischen Microbeads (Vorarbeiten) verglichen. In AP B3.2 wird ebenfalls irreguläres MP für chronische Toxizitätsstudien verwendet, um Langzeiteffekte auf Life-Cycle-Parameter zu untersuchen. Das Hauptaugenmerk liegt hierbei auf den innovativen Aspekten Inflammation und zelluläre Stressantwort. AP B3.3 basiert auf demselben experimentellen Design wie AP B3.2. Hier wird MP durch oxidative Verfahren behandelt, die häufig zur Abwasserreinigung verwendet werden (z.B. Ozonung, UV-Behandlung). Die Toxizität der so 'gealterten' Partikel wird in Analogie zu AP B3.1/2 untersucht. Auch in AP B3.4 wird realistisches MP verwendet. Hier wird allerdings ein zusätzlicher Stressor hinzugefügt: Irreguläres MP wird mit einer Mischung von Mikroschadstoffen beladen, um zu überprüfen, ob dies die Toxizität moduliert.
Das Projekt "Effect of nutrient ratios on harmful phytoplankton and their toxin production" wird vom Umweltbundesamt gefördert und von Universität Jena, Institut für Ernährungswissenschaften durchgeführt. General Information: The goals of the NUTOX project are: (1) to clarify if the present dominance of non-siliceous harmful algal species is due to the high NP to Si-ratios found in European coastal waters (2) to understand how the ratios between N and P affect toxin production in some of the most harmful phytoplankton species found in European waters. Occurrence of toxic blooms in coastal waters is related to a biotic and biotic factors that controls the structure and the growth of the phytoplankton community. One of the major a biotic factors controlling phytoplankton growth is nutrient availability with respect to concentrations and ratios. Thus, to assess the capability of potentially toxic species to bloom in coastal waters, attention will be focused on factors leading to (i) their dominance in the phytoplankton communities, and (ii) to their toxin production. Nutrient ratios influence not only algal succession in natural communities but also the production of toxin by certain phytoplankton species. However, the influence depends on which type of nutrient is limit ant or deficient relative to others for the algal need. In most European marine waters the ratios between nitrogen (N) and phosphorus (P) in relation to silica (Si) have increased due to the high input from N and P from human activities. At the same time toxic algal blooms of non-silica requiring species, such as prymnesiophytes, dinoflagellates and blue-green algae have increased. We will investigate if there is a connection between high NP:Si-ratios and selection towards toxic species by exposing the natural phytoplankton communities contained in mesocosms to a gradient of N:P:Si ratios (in the inflowing medium). In this way we will be able to see if a specific toxic species will out compete the diatoms. In these experiments we will use a combination of new standardized and advanced methods. In an attempt to couple the nutrient cell status to toxicity, the cell toxin content will be determined by HPLC after cell-sorting a few thousands of the desired cells with the help of a flow cytometer. This will be the first time that the nuclear microprobe will be used for the study of the elemental composition of a single phytoplankton cell growing among thousands of other species in nature. These 2 experimental approaches have never been applied yet in phytoplankton ecology in order to get information on the connection between intracellular nutrient composition and toxin production in toxic phytoplankton species occurring in nature. The regulation of toxin production is not only due to genetical inheritance but also due to the cellular chemical composition (the latter being regulated by the medium the algae is growing in). The effect of N:P ratios on the cellular chemical composition and toxin production will be compared in different toxic species... Prime Contractor: University of Kalmar, Aquatic Ecology Department, Institutionen för Naturvetenskap; Kalmar; Sweden.
Das Projekt "Teilprojekt A" wird vom Umweltbundesamt gefördert und von Universität Göttingen, Albrecht-von-Haller Institut für Pflanzenwissenschaften, Abteilung Zellbiologie der Pflanze durchgeführt. Pappeln werden in Kurzumtriebsplantagen (KUP) für die Produktion von Bioenergie angebaut. Während der gesamten Zeit ist die Plantage Pilzerregern ausgesetzt, die schwere Schäden an den Bäumen verursachen können. Die meisten der schädlichen Pilzerreger bei der Pappel sind biotrophe Rostpilze der Gattung Melampsora. Die kosmopolitische Art Melampsora larici-populina stellt die größte Bedrohung für Pappelplantagen dar, da sie jährlich Wachstumseinbußen von bis zu 50 Prozent verursacht. Pflanzen erkennen Pilze über Rezeptoren, die das Pathogen-assoziierte molekulare Muster ('pathogen-associated molecular pattern'; PAMP) Chitin als Ligand binden. Wesentliche Bestandteile dieser Chitin-Rezeptoren sind 'Lysin-Motif-Receptor-Like-Kinasen' (LysM-RLKs). Analysen der Chitin-Signalkette in dikotyledonen Pflanzen zeigen, dass enzymatisch aktive und inaktive LysM-RLKs miteinander interagieren müssen, um einen funktionellen Rezeptor zu bilden. Die Wahrnehmung des Chitins löst in Pflanzen eine Immunantwort aus, die zu einer Resistenz gegen den Eindringling führen kann. Auf der anderen Seite müssen pilzliche Symbionten diese Immunantwort umgehen oder unterdrücken, um die Etablierung einer Mykorrhizierung zu erreichen. In dieser Hinsicht könnten LysM-Effektoren als Modulatoren der pflanzliche Immunantwort eine Rolle spielen. Ferner wird die Kommunikation zwischen der Pflanze und dem Mykorrhizapilz durch pilzliche Myc-Faktoren erleichtert, die von LysM-Rezeptoren des Wirts wahrgenommen werden. Das Ziel des beantragten Projekts ist es, LysM-RLK-Gene in Pappeln und LysM-Effektor-Gene in dem Mykorrhiza-Pilz Laccaria bicolor zu identifizieren. Diese Gene sollen funktionell charakterisiert werden, um dann ausgewählte Gene für die Verbesserung von Pathogenresistenz und Mykorrhizierung zu nutzen. Zu diesem Zweck werden transgene Linien hergestellt. Zusätzlich ist geplant CRISPR/Cas9 zur Genom-Editierung zu verwenden.
Das Projekt "Teilprojekt B" wird vom Umweltbundesamt gefördert und von Technische Universität Darmstadt, Fachgebiet Zellbiologie und Epigenetik, AG Cardoso durchgeführt. Als Ursprungszellen des malignen Melanoms (MM) werden neben melanozytären follikulären Vorläuferzellen und epidermalen Melanozyten auch dermale Stammzellen (DSZ) diskutiert. Die in der Dermis lokalisierten DSZ können durch die tief in die Haut eindringende solare UVA-Strahlung (UVA) geschädigt werden. Während der Differenzierung zu Melanozyten - und der damit verbundenen Migration der Zellen in die Basalzellschicht der Epidermis - sind die Zellen neben UVA auch in zunehmendem Maße UVB-Strahlung (UVB) ausgesetzt und können somit durch beide Strahlenqualitäten geschädigt werden. Unklar ist, ob in UV-vorgeschädigten DSZ initial oder im Verlauf ihrer Differenzierung genetische und epigenetische Änderungen hervorgerufen werden, die eine spätere MM-Genese fördern könnten. In diesem Projekt sollen diese Effekte und deren Auswirkung auf die Differenzierungsfähigkeit UV-bestrahlter DSZ zu Melanozyten überprüft werden. Zunächst wird die UV-Strahlenempfindlichkeit und -Schadensantwort von DSZ nach UVA, UVB und der Kombination aus UVA+UVB nach wiederholter Bestrahlung untersucht. In Abhängigkeit von unterschiedlicher UV-Bestrahlung vor der Differenzierung sollen mögliche Änderungen der Expression von stammzellspezifischen und differenzierungsspezifischen Genen sowie von Tumorsuppressorgenen während des Differenzierungsprozesses untersucht werden. Darüber hinaus werden epigenetische Veränderungen (Histonmodifikationen, globale und DNA-Promotor-Methylierung) ermittelt. Schließlich wird die Expression von microRNAs untersucht, die für die Entwicklung der Zellen nach UV-Bestrahlung bzw. bei der MM-Genese relevant sind. Durch diese Untersuchungen sollen Erkenntnisse über den Einfluss von UV-Bestrahlung dermaler Stammzellen (in-vitro) auf deren Differenzierung und die zugrundeliegenden molekularen Mechanismen gewonnen werden. Die Ergebnisse können neue Wege zur UV-induzierten Melanom-Genese aufzeigen und von großer Bedeutung für den Strahlenschutz im Bereich UV-Strahlung sein.
Das Projekt "Teilprojekt 7" wird vom Umweltbundesamt gefördert und von Max-Planck-Institut Dynamik komplexer technischer Systeme durchgeführt. Das Gesamtvorhaben zielt auf das bessere Verständnis der in P. putida ablaufenden zellulären Vorgänge in Bezug auf den Einsatz als biotechnologischer Produzentenstamm ab. Dabei sollen experimentelle Techniken mit theoretischen Beschreibungen verknüpft werden. Im beantragten Teilprojekt geht es konkret um die Bereitstellung einer Modellierungs- und Simulationsumgebung, in der die mathematischen Modelle abgelegt und analysiert werden können. Der Arbeitsplan sieht insgesamt drei Teilbereiche vor: (i) Modellierung und Modellierungsplattform. Die Erstellung effizienter mathematischer Modelle und ihre Verifikation ist Grundlage für Teilbereich (ii): Modellanayse und die Versuchsplanung. In Bereich (iii) geht es um die Entwicklung von Methoden des Reverse Engineering. Steht eine effiziente und umfangreiche Modellbausteinbibliothek zur Verfügung mit der die wesentlichen zellulären Vorgänge erfasst werden können, so bildet die Modellierungs- und Simulationsumgebung eine wesentliche Voraussetzung um mathematische Modelle in größerem Maßstab erstellen zu können und auch für andere biotechnologisch relevanten Organismen einsetzen zu können.
Das Projekt "Teilprojekt 3" wird vom Umweltbundesamt gefördert und von Charles River Discovery Research Services Germany GmbH durchgeführt. In der Onkologie scheitern über 90 % aller in der Präklinik wirksamen Substanzen in der Klinik. Am Lehrstuhl für Tissue Engineering und Regen. Med. (Uni-Klinikum Würzburg) werden humane dreidimensionale (3D) -Tumormodelle (OncoVaSc™) auf einer dezellularisierten Schweinedarm-Matrix (BioVaSc™) entwickelt. Diese spiegeln histologisch und durch eine geringere Teilungsrate die Tumor-Situation im Patienten besser wider. So zeigt unser 3D Lungentumormodell ein verbessertes Ansprechen auf die in der Klinik gebräuchliche anti-EGFR Therapie bei EGFR-Mutation. Weiterhin konnten wir auch eine erhöhte Chemoresistenz bei KRAS-Mutation zeigen, die klinischen Studien entspricht. Vorhabensziel: Durch eine in vitro/in silico fokussierte Vorauswahl von Substanzen und ihrer Kombinationen für die in vivo Testung sollen hier Tierversuche erheblich reduziert werden (50-90%; Refine und Reduce). Weiterhin soll unser Modell durch Vergleiche mit der Klinik und dem Tiermodell soweit validiert werden, dass das Modell für die Vorklinik durch die Firma Oncotest (Freiburg) implementiert werden kann und dadurch Tierversuche in der Wirksamkeitstestung ersetzt werden können (Replace). Parameter wie Apoptose, Proliferation und Signalwegs-Aktivierung beschreiben Ursachen für ein Therapie-Ansprechen oder Versagen. Diese werden in bioinformatische Modelle integriert (Uni Würzburg) und für Wirksamkeitsvorhersagen von Testsubstanzen und Kombinationen genutzt, die über die in vitro Testung zur Verfeinerung des in silico Modells führen. Zur Validierung werden die Ergebnisse aus dem in vitro und in silico Modell mit Ergebnissen aus Tiermodellen bei Oncotest und aus der Klinik verglichen. Neben der Testung von in silico Vorhersagen bei Resistenz von Tumoren mit EGFR- oder KRAS-Mutation, wird auch der klinisch relevante Biomarker ALK-EML untersucht und Gewebemodelle mit aus PDX-Modellen (patient derived xenografts) hergeleiteten Primärzellen aufgebaut und getestet.
Das Projekt "Genbank für Wildpflanzen für Ernährung und Landwirtschaft" wird vom Umweltbundesamt gefördert und von Karlsruher Institut für Technologie (KIT), Botanisches Institut, Molekulare Zellbiologie durchgeführt. 1. Vorhabenziel Die zentrale Aufgabe der neu zu initiierenden nationalen Genbank für Wildpflanzen mit Nutzungspotential (WmN) und des dezentralen Netzwerkes ist die Sammlung, Bearbeitung, Konservierung und Bereitstellung des Saatgutes zur nachhaltigen Nutzung der wichtigsten WmN in Deutschland und deren Zugang für Forschung und Entwicklung. Im Förderzeitraum wird die Grundlage für ein funktionsfähiges und dauerhaftes Netzwerk gelegt, das darauf ausgerichtet ist, die Aktivitäten zur Erhaltung genetischer Ressourcen von WmN durch die beteiligten und andere entsprechende Institutionen (u.a. Botanische Gärten) über den Förderzeitraum hinaus fortzuführen 1) Abstimmung der Liste prioritär zu besammelnder WmN unter Berücksichtigung und Angabe der beprobtennaturräumlichen Haupt- bzw. Untereinheiten innerhalb der entsprechenden vier Sammlungsregionen der Netzwerkpartner. 2) Saatgutbeprobung unter Berücksichtigung Internationaler Standards. 3) Saatgutreinigung mit Hilfe unterschiedlicher Siebsätze. 4) Saatguttrocknung und Bestimmung der Wasseraktivität (aW-Wert Messung). 5)Saatgutverpackung unter Vakuum in Alu-Beutel. Vorkühlung und Lagerung bei -20 Grad C. 6) Keimtests nachISTA-Besimmungen. 7) Saatgutverwaltung und Bestellmöglichkeit über das Internet - siehe beigefügten Arbeitsplan
Das Projekt "Teilprojekt 1" wird vom Umweltbundesamt gefördert und von Universitätsklinikum Würzburg, Lehrstuhl für Tissue Engineering und Regenerative Medizin durchgeführt. In der Onkologie scheitern über 90 % aller in der Präklinik wirksamen Substanzen in der Klinik. Am Lehrstuhl für Tissue Engineering und Regen. Med. (Uni-Klinikum Würzburg) werden humane dreidimensionale (3D) -Tumormodelle (OncoVaSc™) auf einer dezellularisierten Schweinedarm-Matrix (BioVaSc™) entwickelt. Diese spiegeln histologisch und durch eine geringere Teilungsrate die Tumor-Situation im Patienten besser wider. So zeigt unser 3D Lungentumormodell ein verbessertes Ansprechen auf die in der Klinik gebräuchliche anti-EGFR Therapie bei EGFR-Mutation. Weiterhin konnten wir auch eine erhöhte Chemoresistenz bei KRAS-Mutation zeigen, die klinischen Studien entspricht. Vorhabensziel: Durch eine in vitro/in silico fokussierte Vorauswahl von Substanzen und ihrer Kombinationen für die in vivo Testung sollen hier Tierversuche erheblich reduziert werden (50-90%; Refine und Reduce). Weiterhin soll unser Modell durch Vergleiche mit der Klinik und dem Tiermodell soweit validiert werden, dass das Modell für die Vorklinik durch die Firma Oncotest (Charles River, Freiburg) implementiert werden kann und dadurch Tierversuche in der Wirksamkeitstestung ersetzt werden können (Replace). Bei uns gemessene Parameter wie Apoptose, Proliferation und Signalwegs-Aktivierung beschreiben Ursachen für ein Therapie-Ansprechen oder Versagen. Diese werden in bioinformatische Modelle integriert (Uni Würzburg) und für Wirksamkeitsvorhersagen von Testsubstanzen und Kombinationen genutzt, die über die in vitro Testung zur Verfeinerung des in silico Modells führen. Zur Validierung werden die Ergebnisse aus dem in vitro und in silico Modell mit Ergebnissen aus Tiermodellen bei Oncotest und aus der Klinik verglichen. Neben der Testung von in silico Vorhersagen bei Resistenz von Tumoren mit EGFR- oder KRAS-Mutation, wird auch der klinisch relevante Biomarker ALK-EML untersucht und Gewebemodelle mit aus PDX-Modellen (patient derived xenografts) hergeleiteten Primärzellen aufgebaut und getestet.
Das Projekt "Teilprojekt B" wird vom Umweltbundesamt gefördert und von Universität Frankfurt am Main, Buchmann Institute for Molecular Life Sciences (BMLS), Physical Biology Group durchgeführt. Das wissenschaftliche Hauptziel ist, ein humanes HCC Organoid Modell für die personalisierte Krebstherapie und der Wirkstoffentwicklung zu etablieren. Die phänotypische Bewertung erfolgt mit Lichtscheibenmikroskopie (LSFM). Das LSFM bietet die besten Voraussetzungen im Vergleich zu anderen bildgebenden Verfahren. Eine Weiterentwicklung von LSFM für die industrielle Hochdurchsatzanalyse wird im Projekt angewendet. Die 3D-Bildanalyse erfolgt über einen automatischen Bildanalysestrang. Dadurch werden phänotypische Änderungen in Organoiden quantitativ bestimmt. Weiterhin wird ein systembiologischer Ansatz für therapierte HCC Organoide entwickelt. Dies wird in Form eines angepassten mathematischen Modells für Zellwachstum, Zellmorphologie und Zellkinetik realisiert. Phase 1: Etablierung eines HCC Organoid Modells. Die Entwicklung der Organoide erfolgt aus Lebergewebebiopsien von ca. 10-15 Patienten. Die entwickelten Organoide werden am BMLS mit Lichtscheibenmikroskopie (LSFM) analysiert und validiert. Es wird überprüft, ob alle pathologischen Merkmale einer HCC Erkrankung in den Proben vorliegen. Phase 2: Modellierung der Wirkung von getesteten hepatotoxischen Wirkstoffen. Der Antragsteller entwickelt ein geeignetes mathematisches Modell zur quantitativen Bewertung von bekannten Wirkstoffen in HCC Organoiden. Dadurch wird ein prädiktives Verfahren zur Optimierung neuer Chemotherapeutika erarbeitet. Phase 3: Hochdurchsatzanalyse neuer Wirkstoffe in HCC Organoiden. Basierend auf den Ergebnissen an bekannten Wirkstoffen aus der zweiten Projektphase werden die Organoide in diesem Abschnitt auf unbekannte Wirkstoffbibliotheken getestet.
Das Projekt "Teilprojekt 4" wird vom Umweltbundesamt gefördert und von Hochschule Darmstadt, Fachbereich Chemie- und Biotechnologie, Lehrgebiet Zellbiologie, Zellkulturtechnik durchgeführt. Etliche endokrin wirkende Stoffe zeigen auch eine neuroentwicklungstoxische Wirkung, wobei die zugrundeliegenden Mechanismen bislang unzureichend geklärt sind. In diesem Projekt sollen Marker ermittelt werden, die eine parallele Untersuchung beider Wirkqualitäten ermöglichen. Zum Nachweis (anti)östrogener und (anti)androgener Stoffeffekte wird ein rekombinantes Hefesystem (R-YES, R-YAS) verwendet. Um embryotoxische Wirkungen zu erfassen, ist die Durchführung des Embryonic Stem Cell Tests (EST) vorgesehen, der dann durch Erfassung der Ausbildung neuraler Zelltypen um spezifisch neurotoxische Endpunkte erweitert wird (neuroEST). Dies ist auch mit neuralen Stammzellen (NSC) vorgesehen. Damit kann eine embryo- und neurotoxische Wirkung endokrin wirkender Stoffe auf frühe Differenzierungsprozesse nachgewiesen werden und schließlich ein Test zum in vitro-Nachweis neuroentwicklungstoxischer Stoffeffekte entstehen. AP1: Testen neurotoxischer und endokriner Stoffe mit R-YES, R-YAS und EST, bei dem funktionale und morphologische Endpunkte untersucht werden, die charakteristisch sind für ausdifferenzierende neurale Zelltypen. Etablierung der NSC. AP2: Weiterentwicklung des EST zum neuroEST für den Nachweis spezifisch neurotoxischer Wirkungen. Ergebnisse aus AP1 und Literaturdaten bilden die Basis zur Markeridentifikation für die Charakterisierung neuraler Zelltypen und ihres Differenzierungsgrades. AP3: Testen von neurotoxischen, endokrinen Substanzen mit NSC, die zu Neuronen, Gliazellen, Astrozyten, Oligodendrozyten ausdifferenziert werden. Diese werden in verschiedenen Differenzierungsstadien behandelt und untersucht. Gesucht werden Marker, die bei endokrin und neurotoxisch wirkenden Substanzen spezifisch moduliert werden. AP4: Finale Substanztestung mit NSC und neuroEST auf Basis dieser identifizierten Marker. Hier fließen auch Ergebnisse anderer TP des NeuroBox-Verbunds ein, indem dort identifizierte Marker auch auf ihre Eignung bei NSC und neuroEST untersucht werden.