API src

Found 34 results.

Related terms

Forest management and habitat structure - influences on the network of song birds, vectors and blood parasites

Das Projekt "Forest management and habitat structure - influences on the network of song birds, vectors and blood parasites" wird vom Umweltbundesamt gefördert und von Universität Freiburg, Forstzoologisches Institut, Professur für Wildtierökologie und Wildtiermanagement durchgeführt. Forest structure is altered by humans for long times (Bramanti et al. 2009). The long lasting modification of forests pursuant to human demands modified the living conditions for birds as well as for many other animals. This included changes in resource availability (e.g., food, foraging, nesting sites) and changes of interspecific interactions, e.g., parasitism and predation (Knoke et al. 2009; Ellis et al. 2012). Also species compositions and the survivability of populations and even species are affected. The loss of foraging sites and suitable places for reproduction, the limitation of mobility due to fragmented habitats and the disturbances by humans itself may lead to more stressed individuals and less optimal living conditions. In certain cases species are not able to deal with the modified requirements and their populations will shrink and even vanish. Depending on the intensity of management and the remaining forest structure, biodiversity is more or less endangered. Especially in systems of two or more strongly connected taxa changing conditions that affect at least one part may subsequently affect the other, too. One system of interspecific communities that recently attracted the attention of biologists includes birds, blood parasites (haemosporidians) and their transmitting vectors. For instance, avian malaria (Plasmodium relictum) represents the reason for extreme declines in the avifauna of Hawaii since the introduction of respective vectors (e.g. Culicidae) during the 20th century (van Riper et al. 1986, Woodworth et al. 2005). With the current knowledge of this topic we are not able to predict if such incidences could also occur in Germany. All in all, different management strategies and intensity of forest management may influence the network of birds, vectors and blood parasites and change biodiversity. To elucidate this ecological complex, and to understand the interactions of the triad of songbirds as vertebrate hosts, dipteran vectors and haemosporidians within changing local conditions, I intend to collect data on the three taxa in differently managed forest areas, the given forest structure and the climatic conditions. I will try to explain the role of abiotic factors on infection dynamics, in detail the role of forest management intensity. Data acquisition takes place at three spatially divided locations: inside the Biodiversity Exploratory Schwäbische Alb, at the Mooswald in Freiburg, and inside the Schwarzwald.

D 7: Research for improved fish nutrition and fish health in upland aquaculture systems in Yen Chau, Son La Province, Northern Vietnam

Das Projekt "D 7: Research for improved fish nutrition and fish health in upland aquaculture systems in Yen Chau, Son La Province, Northern Vietnam" wird vom Umweltbundesamt gefördert und von Universität Hohenheim, Institut für Tierproduktion in den Tropen und Subtropen (480), Fachgebiet Aquakultur-Systeme und Tierernährung in den Tropen und Subtropen (490i) durchgeführt. Background: Aquaculture significantly contributes to protein supply and cash income of Black Thai farmers in Yen Chau, Son La province, Northern Vietnam. Fish is produced for cash income (2/3rd) and subsistence (1/3rd) while self recruiting species (small fish, crustaceans and molluscs) provide additional protein for home consumption. The current aquaculture system is a polyculture of the macroherbivorous grass carp as main species together with 3-5 other non-herbivorous fish species like Common Carp, Silver Carp, Bighead Carp, Mud Carp, Silver Barb and Nile Tilapia. With a rearing period of 21 months, the productivity of the aquaculture system amounts to 1.54 +- 0.33 t ha-1 a-1 and can be characterized as low. Nearly each household has at least one pond, which serves multiple purposes and is operated as a flow-through-system. The steady water flow is advantageous for the culture of grass carp, but causes a continuous loss of nutrients and high turbidity and thereby limits the development of phytoplankton and zooplankton which are natural food for non-herbivorous species. The farmers are using mainly green leaves (banana, bamboo, cassava, maize and grass) and crop residues (rice bran, rice husk, cassava root peel, distillery residue) as feed input, which is available to Grass Carp while non-herbivorous fish species are not fed specifically. Manure is used as fertilizer. The uneaten parts of fed plants are sometimes accumulating in the pond over several years, resulting in heavy loads of organic matter causing oxygen depletion. Anaerobic sediment and water layers limit the development of zoobenthos and may provide a habitat for anaerobe disease agents. Since 2003 an unknown disease condition has been threatening Grass Carp production and is having a major economic impact on the earnings from fish farming in Yen Chau region. Other fish in the same ponds are not affected. Especially in March-April and in September-October the disease is causing high morbidity and mortalities of Grass Carp in affected ponds and is thereby decreasing the dietary protein supply and income generation of Black Thai farmers. Little is known about the definition or aetiology of the disease condition.

Effects of nurse tree species on growth, environment and physiology of underplanted Toona ciliata (F. Muell.)

Das Projekt "Effects of nurse tree species on growth, environment and physiology of underplanted Toona ciliata (F. Muell.)" wird vom Umweltbundesamt gefördert und von Universität Freiburg, Waldbau-Institut durchgeführt. Toona ciliata (Australian red cedar) is highly valued for veneer and furniture production and endangered in its natural ecosystems due to exploitation. This work aims to improve the availability of this wood on the market and help reduce pressure on the species in its native environment. An afforestation project cultivating Toona ciliata was introduced to the study site in Misiones, Argentina. The local cultivation faces losses caused by drought and frost, because T. ciliata requires overstory protection when young. Consequently, Grevillea robusta, Pinus elliottii x Pinus caribaea, and Pinus taeda, nurse tree species which also produce sought-after wood were chosen to provide protection. One-year-old T. ciliata seedlings were planted underneath each of the six-year-old nurse species. An inventory after one year indicated that both survival and height increment were highest underneath G. robusta and lowest underneath P. elliottii x P. caribaea. In this study I am examining possible facilitation and competition mechanisms between the overstory and understory T. ciliata. Extensive empirical data collected over the course of 3 years will be utilized to project potential growth scenarios for several rotations using a computer based forest growth model.

Impacts of well and Human Intrusion on Khulan (Wild Ass) and other threatened species in the Gobi Desert

Das Projekt "Impacts of well and Human Intrusion on Khulan (Wild Ass) and other threatened species in the Gobi Desert" wird vom Umweltbundesamt gefördert und von Universität Freiburg, Forstzoologisches Institut, Professur für Wildtierökologie und Wildtiermanagement durchgeführt. The importance of the Gobi environment to the conservation of Khulan and other threatened wildlife and to the future of the pastoral livestock production is undeniable. At the present time, Mongolia is anticipating development of a commercialized agricultural sector that could easily cause greater intrusion of human activities in the Gobi environment than current pasto-ral livestock production. Development of other sectors of the Mongolian economy, especially mining and road construction, could also impact environmental security in general and habitat needs of the khulan and associated wildlife in the Gobi environment in particular. Work is required to clarify to what extent (if any) the wild ass is affected or competes with domestic livestock and other human intrusions, and to what degree. On the basis of these findings, ma-nagement steps for both khulan protection and rural livelihood/water resources development can be developed.

Ecological Land Use Planning and Sustainable Management of Urban and Sub-urban Green Areas in Kota Kinabalu, Malaysia

Das Projekt "Ecological Land Use Planning and Sustainable Management of Urban and Sub-urban Green Areas in Kota Kinabalu, Malaysia" wird vom Umweltbundesamt gefördert und von Universität Göttingen, Burckhardt-Institut, Professur für Naturschutz und Landschaftspflege durchgeführt. Malaysia has been identified as one of the worlds mega diverse countries being extremely rich in biodiversity. Tropical rainforests, the oldest and most diverse ecosystems on earth, still cover an average 60 Prozent of the country (Soepadmo, 1998). The rainforests are estimated to contain about 12,500 species of flowering plants, and more than 1,100 species of ferns and fern allies (MSET, 1998). The dominating plant family is dipterocarp trees many of which produce commercial timber being native to Borneo as well as to Peninsular Malaysia, Indonesia, Philippine, Thailand etc. Large portions of these species are endemic and uniqueto the Malaysian archipelago.There is also great diversity in fauna, including about 300 species of wild mammals, 700-750 species of birds, 350 species of reptiles, 165 species of amphibians and more than 300 species of freshwater fish. Endemism in flora and fauna is high. As with other cultures, it is assumed that much of the traditional knowledge about these flora and fauna are heritage of the many traditional societies and communities that are dependent on them for their livelihood (Soepadmo, 1998).Unfortunately, much of Sabahs natural vegetation has been altered and degraded due to unsustainable and destructive human practices. Their existence continues to be threatened. Certain forest types are in danger of being totally eradicated from Sabah, while many plant species will likely disappear before they have ever been described. The fragmentation of natural forests also threatens the viability of various wildlife populations. The State is undergoing rapid development and the transformation of rural areas into urban is also accelerating. Many green areas are lost which causes serious threats to biodiversity in the country, because green areas play a very important role in buffering negative impacts on conservation areas.The objective of this study is to provide the information for developing a concept for sustainable urban green management in Kota Kinabalu district as well as to judge the ecological sustainability and to describe the importance of urban green area for the public. A focus is placed on the terrestrial and aerial inventory of the natural resources, including trees, birds, and biotopes. Furthermore, the study tries to explore the perception and attitude of local people, concerning urban forests and green areas. It also explores and investigates the possibilities for implementing an urban green management concept.The terrestrial data collection accordingly comprises of four fields: (1) tree inventory/survey, (2) bird survey/observation, (3) public perception survey, and (4) the mapping and classifying of urban forest functions.i).

Quantifying and Understanding the Earth System - JI Forest-Climate-Projects in North-West Russia

Das Projekt "Quantifying and Understanding the Earth System - JI Forest-Climate-Projects in North-West Russia" wird vom Umweltbundesamt gefördert und von GFA Envest GmbH durchgeführt. The QUEST project builds capacity through the development of new REDD+ like methodologies for Joint Implementation forest. This includes the development of the first methodology for Improved Forest Management based on 'Forest Management' under Article 3.4 of the Kyoto Protocol. These methodologies may be applied by other JI project developers. The QUEST project will, therefore, strenghten project activities in Land Use, Land Use Change and Forestry sector. QUEST also involves the application on four demonstrator forestry projects in Russia and Romania allowing for the investigation of the projects impact with respect to energy use, policy, verification and methodological issues and social, environmental and hydrological concerns with Agriculture Forestry and Other Land Use (AFOLU) in a 'hands on', 'learning by doing' approach. It is the projects intention to contribute to the conservation of the Dvinsky, one of intact forest as well as to generate emission reductions. A successful implementation of the Dvinsky Climate Action Project might serve as a lighthouse example for the JIs potential to conserve Russias endangered HCV forests. The project activity will improve existing forest practices aiming at an increment of biomass volume in forests under concession. Carbon finance will enable logging firms to switch from the traditional clear cutting to a group felling system, thereby reducing the negative impact of forest management on the ecological system. Concluding, JIFor explores the LULUCF framework, develops baseline and monitoring methodologies, facilitates forest climate projects based on 'Forest Management', Art. 3.4. This provides important lessons learnt for a future REDD+ policy scheme under a follow up agreement to the Kyoto Protocol. GFA ENVEST contributes to: Assessment of the policy context of LULUCF and JI in Europe including permanence, issuance of AAUs for LULUCF projects, issuance of RMUs for LULUCF projects (considering the design of the IET) and evaluation of annual- vs- five year accounting on a national level; Baseline and monitoring methodologies for JI; development of methodologies for Improved Forest Management and Forest Conservation; JI Project Design Document development - Dvinsky Forest Conservation in Russia; JI Project Design Document development - Svetloserskles Improved Forest Management in Russia; Development of tools, Transferability, Scalability, and Identification of Future Projects and Research Needs; Assessment of carbon rights ownership for forestry projects in Russia.

Science for the Protection of Indonesian Coastal Environment (SPICE)

Das Projekt "Science for the Protection of Indonesian Coastal Environment (SPICE)" wird vom Umweltbundesamt gefördert und von Stiftung Alfred-Wegener-Institut für Polar- und Meeresforschung e.V. in der Helmholtz-Gemeinschaft (AWI) durchgeführt. The Indonesian Archipelago harbours the most diverse marine habitat on earth, but also the presently most endangered. Overfishing, deleterious fishing practices and land-based sources of pollution result in a dramatic decline of the reef-based ecosystems. Coral reefs thrive in clear oligotrophic water. Deteriorating water quality due to increased terrigenous inputs of sediments, nutrients and pollutants are believed to be among the major causes of the demise of Indonesian coral reefs over the last decades. The pelagic cycling of material, production and development of larvae in shallow coastal waters as well as the exports of material to the benthos and adjacent deep water ecosystem are yet poorly understood. In this program 12 Indonesian and 14 German universities and institutions are involved. From the German side it is funded by the Federal Ministry of Education and Research (BMBF). The Center for Tropical Marine Ecology (ZMT) is responsible for the overall coordination. The main goal of the project is to strengthen the scientific basis for the protection of coral reefs in Southeast Sulawesi, harbouring some of the richest but also most endangered coral reefs in the world. In the Spermonde Archipelago off Makassar coral reef losses amounted to 20 Prozent over the last 12 years, eroding the income base for many thousands of families. Regulations related to the marine environment and its valuable resources have not been effectively implemented, and public awareness among the growing local population is still very limited. The aim of the AWI plankton group is to assess the significance of suspended matter for the reef organisms and to demonstrate that environmental changes are an important factor for phyto- and zooplankton communities and hence, for their consumers. To achieve this goal, quantitative studies of plankton occurrence and distribution are essential on various spatial and temporal scales. Further topics are the duration of the pelagic phase of economically important benthic organisms and the life cycles of dominant zooplankton species.

Assessment of Air Pollution Effects on Cultural Heritage - Management Strategies (CULT-STRAT)

Das Projekt "Assessment of Air Pollution Effects on Cultural Heritage - Management Strategies (CULT-STRAT)" wird vom Umweltbundesamt gefördert und von Umweltbundesamt durchgeführt. CULT-STRAT will establish a scientific reference for developing strategies for policy and decision-makers on European and national levels within the CAFE Programme and for heritage managers for strategic decisions at local level. It will do this through a choice of material indicators and pollution threshold levels based on best available scientific data including deterioration models, spatial distribution and mapping of pollutants and of stock of materials at risk, cost estimates, comparison studies off different conservation approaches. Damage caused to objects of cultural heritage belongs to the most serious among the detrimental effects of anthropogenic air pollutants as it endangers a vital part of the European identity. There is therefore an urgent need to include the impact of pollutants on cultural heritage alongside the human health and parts of the ecosystem that are already concerned in the EU Directives on urban air quality. This is especially relevant for the CAFE (Clean Air for Europe) programme of the Commission and the Community interventions through the 'Culture 2000' framework programme and the structural funds. The overall aim is to identify material indicators and threshold levels of pollutants to be used for development of strategies for sustainable maintenance and preventive conservation of European cultural heritage and air quality policy to reduce damage. The models will permit ranking of the effects of pollutants on corrosion and soiling of materials. The air pollution models will be related to local fluxes, including indoor concentrations. The stock of cultural heritage materials at risk in selected areas (Paris, Rome, Florence, Prague, Madrid, and Berlin) will be used for assessment and mapping of areas where cultural heritage objects are endangered. Prime Contractor: Korrosionsinstitutet Sci AB, R&D Department Atmospheric Corrosion, Stockholm SE.

Analysis of impacts of woodland fragmentation on indicator species in consideration of landscape metrics

Das Projekt "Analysis of impacts of woodland fragmentation on indicator species in consideration of landscape metrics" wird vom Umweltbundesamt gefördert und von Universität Hamburg, Arbeitsbereich für Weltforstwirtschaft und Institut für Weltforstwirtschaft des Friedrich-Löffler-Institut, Bundesforschungsinstitut für Tiergesundheit durchgeführt. In our central European man-made landscape more and more habitats become destroyed or fragmented because of the increasing anthropogenic need of available land. Roads, residential, and industrial areas separate formerly connected habitats into small remnants, thus creating small subpopulations. Especially stenotopic species with low dispersal power are endangered because exchange of specimen between different habitat patches is reduced or entirely inhibited. Methods for the quantification of fragmentation are necessary to develop management and species-specific conservation plans for habitat networks. In this project we investigate the structure of the German woodlands by calculating landscape metrics and study the impacts of fragmentation on different FFH-species' occurrences. Indices which significantly quantify the fragmentation of woodlands are identified by using a simulation model of neutral landscapes. ATKIS2008-data are used for the calculation of the selected landscape metrics. Topographic maps (TK25) serve as the interface between determinated fragmentation of forest and habitat modelling. A niche model of different species is calculated to demonstrate the impacts of woodland fragmentation on different woodland species (e.g. wild cat (Felis sylvestris), barbastelle bat (Barbastella barbastellus), stag beetle (Lucanus cervus), and black stork (Ciconia nigra).

Vulnerability and Resilience of Rangeland Vegetation as Affected by Livestock Management, Soils and Climate

Das Projekt "Vulnerability and Resilience of Rangeland Vegetation as Affected by Livestock Management, Soils and Climate" wird vom Umweltbundesamt gefördert und von Rheinische Friedrich-Wilhelms-Universität Bonn, Institut für Nutzpflanzenwissenschaften und Ressourcenschutz INRES, Arbeitsgruppe Pflanzenbau durchgeführt. The vegetation of East and South African savannahs has been shaped by the complex interaction of geo-biophysical processes and human impact. For both regions a controversial discussion is pertinent, as to whether massive degradation threatens the sustainability of livelihoods in these regions. Rangeland vegetation is mainly affected by environmental conditions (soil and climate) and by livestock management. Extent and interaction of these drivers are not well understood but have profound impacts on the resilience and vulnerability of these systems to be shifted toward unfavourable degraded or bush encroached states. The project aims to analyse and model rangeland vegetation in response to range management including livestock, soil quality and climatic conditions and to assess the impacts of changes in these conditions on the resilience and vulnerability of rangeland systems. Field measurements, remote sensing of vegetation patterns and dynamics and simulation modelling will be used to understand the dynamics of rangeland vegetation. We will use the 'fast' or 'state' variables potential of pastures to produce palatable biomass, the variability of this production, and the system's potential to recover from disturbance impact as indicators of resilience. 'slow' variables that control (or drive) the 'fast' variables such as management, climate and soil variables are recorded in cooperation with other subprojects as with A1 for soil variables. Results of the project will show which management activities are most favourable for individual regions to sustain plant production in the long term.

1 2 3 4