Das Projekt "PV-H2-Boot Solgenia" wird vom Umweltbundesamt gefördert und von Hochschule Konstanz Technik, Wirtschaft und Gestaltung, HTGW, Institut für Angewandte Forschung , Energiewandlung in Solarsystemen (IAF,EWIS) durchgeführt. 1. Introduction: In view of the increasing problem of energy supply, the University of Applied Sciences Konstanz developed a research boat powered by photovoltaic and fuel cells. The core question of the research project is, if such a combination represents a viable option for recreational and commercial boating. To answer this question, long-time performance-studies of each component by itself and in combination with others in marine environment are necessary. An Information-Management-System (IMS) interfacing to about ninety parameters was developed, providing the basis for analysis. 2. Energy Supply System: The energy supply system consists of two energy conversion units (PV-generator and fuel cell) and two energy storage units (battery and hydrogen tank). A DC/AC-inverter together with an asynchronous motor converts the electrical energy into mechanical energy for the propeller. The voltages between the three fuel cell modules as well as the PV-generator and the battery are adjusted by DC/DC-converters (see figure 1). The hydrogen will be provided by an electrolysis unit within the laboratory driven by a PV-generator and stored on land. One of the research aims is to adapt the hydrogen production depending on solar radiation to the hydrogen demand by the stationary fuel cells (in the laboratory) and the mobile fuel cells (in the boat). 3. Information management system (IMS): The requirements which the IMS has to fulfil are quite complex: 1. a real-time control-system has to operate the boat and process the parameters, 2. a graphical user interface has to provide meaningful and clear information for skipper as well as service and scientist, 3.measured data has to be periodically transmitted to a data bank at the institute for further processing. Use of the Internet gives independence of location. 4. Energy management: Energy management is one of the main tasks of the IMS. One of the research aims is to develop and optimize the management rules. The energy system itself consists of one controllable (fuel cell) and one not controllable energy converter (PV-generator) as well as of two energy storage devices (battery and H2-tank). Parameters affecting the energy management are among others: speed of boat, distance to travel, battery capacity and solar radiation. These parameters are either measured directly or calculated by the IMS. The Solgenia additionally will be used as laboratory unit in teaching: The students shall become familiar with the fundamental problems of managing renewable energies. 5. Graphical user interface: An industrial touch panel PC serves as man-machine-interface. The graphical user interface was divided into two basic groups: skipper and service/scientist. The menu for the latter group was protected by password to prevent an inexperienced skipper from creating any mischief. etc.
Das Projekt "Clean Sky Technology Eco Design (Clean Sky ECO)" wird vom Umweltbundesamt gefördert und von Airbus Helicopters Deutschland GmbH durchgeführt. The Eco-Design ITD (ED-ITD) gathers and structures from one side activities concerned specifically with development of new material and process technologies and demonstration on airframe and rotorcraft related parts stressing the ecolonomic aspects of such new technologies; from the other side, activities related to the All Electrical Aircraft concept related to small aircraft. ED-ITD is directly focused on the last ACARE goal: 'To make substantial progress in reducing the environmental impact of the manufacture, maintenance and disposal of aircraft and related products'. Reduction of environmental impacts during out of operation phases of the aircraft lifecycle can be estimated to around 20 % reduction of the total amount of the CO2 emitted by all the processes (direct emissions and indirect emissions i.e. produced when producing the energy) and 15 % of the total amount of the energy used by all the processes. In addition, expected benefit brought by the All Electric Aircraft concept to be highlighted through the conceptual aircraft defined in the vehicle ITDs is estimated to around 2% fuel consumption reduction due to mass benefits and better energy management. The status of the global fleet in the year 2000 constitutes the baseline against which achievements will be assessed. Progress toward these goals will result not only from ED internal activities but also from the collaboration with the relevant cross-cutting activities in GRA , GRC, SFWA (business jet platform) and SGO (electrical systems).
Das Projekt "European Sub-Polar Oceans Project, ESOP-2" wird vom Umweltbundesamt gefördert und von Universität Hamburg, Zentrum für Meeres- und Klimaforschung, Institut für Meereskunde (IfM) durchgeführt. The goal of the ESOP-II project, funded by the European Unions MAST III programme, is to understand the thermohaline circulation in the Greenland Sea, its sensitivity, and impact on global ocean circulation, building on an unique combination of novel experimental techniques, modelling and experience, gained under ESOP-1. The project is a consortium of scientists from 21 laboratories in 8 European countries (D, DK, F, Iceland, I, N, UK, S). The focus of ESOP-2 is to study the formation of deep water in the Greenland sea, one of the most active regions in the world's oceans for this process. Deep water formation in the Nordic Seas drives the global 'Conveyor-belt', that is recognized to be relevant to climate and climate change.
Das Projekt "Grey water treatment in upflow anaerobic sludge blanket (UASB) reactor" wird vom Umweltbundesamt gefördert und von Technische Universität Hamburg-Harburg, Institut für Abwasserwirtschaft und Gewässerschutz B-2 durchgeführt. In ecological sanitation, the wastewater is considered not only as a pollutant, but also as a resource for fertiliser, water and energy and for closing water and nutrients cycles (Otterpohl et. al., 1999; Otterpohl et. al., 2003; Elmitwalli et al. 2005). The ecological sanitation based on separation between grey and black water (and even between faeces and urine), is considered a visible future solution for wastewater collection and treatment. Grey water, which symbolises the wastewater generated in the household excluding toilet wastewater (black water), represents the major volume of the domestic wastewater (60- 75 percent) with low content of nutrients and pathogens (Otterpohl et. al., 1999; Jefferson et al., 1999; Eriksson et al., 2002). Most of grey-water treatment plants include one or two-step septic-tank for pre-treatment (Otterpohl et al., 2003). The grey-water treatment needs both physical and biological processes for removal of particles, dissolved organic-matters and pathogens (Jefferson et al., 1999). Recently, many researchers have studied the grey-water treatment either by application of high-rate aerobic systems, like rotating biological contactor (Nolde, 1999), fluidised bed (Nolde, 1999), aerobic filter (Jefferson et al., 2000), membrane bioreactor (Jefferson et al., 2000), or by application of low-rate systems, like slow sand filter (Jefferson et al., 1999), vertical flow wetlands (Otterpohl et. al., 2003). Although high-rate anaerobic systems, which are low-cost systems, have both physical and biological removal, no research has been done until now on grey water in these systems. The grey water contains a significant amount (41 percent) of chemical oxygen demand (COD) in the domestic wastewater (Otterpohl et al., 2003) and this amount can be removed by the highrate anaerobic systems. Although high-rate anaerobic systems have been successfully operated in tropical regions for domestic wastewater treatment, the process up till now is not applied in lowtemperature regions. The COD removal is limited for domestic wastewater treatment in high-rate anaerobic systems at low temperatures and, therefore, a long HRT is needed for providing sufficient hydrolysis of particulate organic (Zeeman and Lettinga, 1999; Elmitwalli et al. 2002). The grey water has a relatively higher temperature (18-38 degree C), as compared to the domestic wastewater (Eriksson et al. 2002), because the grey water originates from hot water sources, like shower (29 degree C), kitchen (27-38 degree C) and laundry (28-32 degree C). Therefore, high-rate anaerobic systems might run efficiently for on-site grey water treatment, even in low-temperature regions. The upflow anaerobic sludge blanket (UASB) reactor is the most applied system for anaerobic domestic waster treatment. Accordingly, the aim of this research is to study the feasibility of application of UASB reactor for the treatment of grey water at low and controlled (30 degree C) temperatures.
Das Projekt "How is the evolution of stratospheric ozone affected by climate change, and how strong is the feedback? (SHARP-OFC)" wird vom Umweltbundesamt gefördert und von Universität Bremen, Institut für Umweltphysik durchgeführt. One major goal of this project is to analyse updated observational trace gas data together with stateof- the art models (CTMs and CCMs) in order to obtain a better understanding of the interaction between ozone and climate change and the underlying dynamical and chemical processes. The extended satellite, balloon and aircraft observations combined with improved model calculations (CTM and CCM) are used to further reduce the uncertainties in the bromine budget, in particular the contribution from VSLS (very short lived substances) and to further elucidate on the role of iodine in the stratosphere. Furthermore detailed studies on the long-term evolution (trends and variability) of observed stratospheric trace gases with foci on profiles of O3, NO2 and aerosols retrieved from SCIAMACHY are proposed. Future evolution of stratospheric ozone will be investigated using updated EMAC CCM model runs, some of them in combination with an interactive atmosphere-ocean feedback. In addition to issues on the climate feedback on future ozone, particular emphasis will be given to the increasing role of N2O and GHG emissions.
Das Projekt "B 1.2: Efficient water use in limestone areas - Phase 2" wird vom Umweltbundesamt gefördert und von Universität Hohenheim, Institut für Bodenkunde und Standortslehre durchgeführt. The elevated areas of Northern Thailand highlands are inhabited by ethnic minorities. On the other hand, the Thai majority prefers the valley bottoms. Population growth of all groups, reforestation and commercialisation of agriculture lead to an increasing pressure on land and water resources. Therefore, intensified land and water use systems are desired which are resource conserving at the same time. Here, special problem areas are the karstic limestone catchments due to the limited of surface waters.Own pre-investigations together with subproject A1 have shown, that land use systems there are subsistence oriented and local farmers do not use irrigation. But they would like to develop such technology, especially in order to increase staple crop production (highland rice, maize). But lack of irrigation possibilities is also responsible for the lack of diversification of land use systems with respect to orchards. One possibility to increase staple crop yields is to prolong the vegetation period by use of water harvesting technologies. Aim of this project is to develop such low cost water harvesting technologies (together with subproject B3.1) based on a participatory approach and to model the effect of these on the water balance at the catchments scale. This will be done on the basis of the previous variability studies and should lead to model tools, which allow to evaluate ex ante SFB innovation effects on the water balance. The project area is the Bor Krai catchments. Here, weirs will be installed to quantify surface water availability. An investigation plot will be situated near the village of Bor Krai which serves for water balance measurements (TDR/densitometry) and at the same time as demonstration plot for the local community. Here water harvesting by means of filling the soils field capacity at the end of the rainy season by gravity irrigation in order to prolong the vegetation period will be researched. Through cropping of participatory evaluated varieties the crop yield should be increased. The water consumption of traditionally managed and dominant crops (including orchards) will be measured at three further sites in the catchment (TDR, tensiometer). The water balance of the soil cover in the karst catchment will be based on the coupling of a SOTER map with a water transport model. The data base will be completed by soil type mapping, spatially randomised collection of soil physical properties (texture, bulk density, infiltration, water retention curve) and determination of the ku-function at two representative sites. As project results the available water amount for irrigation purposes will be quantified. The effective use of this water reserve will lead to increased productivity of the dominant crops and limitations to orchard productivity will be reduced. (abridged text)
Das Projekt "B 3.1: Efficient water use of mixed cropping systems in watersheds of Northern Thailand highlands" wird vom Umweltbundesamt gefördert und von Universität Hohenheim, Institut für Kulturpflanzenwissenschaften (340), Fachgebiet Düngung und Bodenstoffhaushalt (340i) durchgeführt. Worldwide an important part of agricultural added value is produced under irrigation. By irrigation unproductive areas can be cultivated, additional harvests can be obtained or different crops can be planted. Since its introduction into Northern Thailand lychee has developed as one of the dominating cash crops. Lychee is produced in the hillside areas and has to be irrigated during the dry season, which is the main yield-forming period. Water therefore is mainly taken from sources or streams in the mountain forests. As nowadays all the available resources are being used do to increased production, a further increase in production can only be achieved by increasing the water use efficiency. In recent years, partial root-zone drying has become a well-established irrigation technique in wine growing areas. In a ten to fifteen days rhythm one part of the root system is irrigated while the other dries out and produces abscisic acid (ABA) a drought stress hormone. While the vegetative growth and thus labor for pruning is reduced, the generative growth remains widely unaffected. Thereby water-use efficiency can be increased by more than 40Prozent. In this sub-project the PRD-technique as well as other deficit irrigation strategies shall be applied in lychee and mango orchards and its effects on plant growth and yield shall be analyzed. Especially effects of this water-saving technology on the nutrient balance shall be considered, in order to develop an optimized fertigation strategy with respect to yield and fruit quality. As shown in preliminary studies, the nutrient supply is low in soils and fruit trees in Northern Thailand (e.g. phosphate) and even deficient for both micronutrients boron (B) and zinc (Zn). Additionally, non-adapted supply of nitrogen (mineralization, fertilization) can induce uneven flowering and fruit set. Therefore, improvement is necessary. For a better understanding of possible influence of low B and Zn supply on flowering and fruit set, mobility and retranslocation of both micronutrients shall be investigated for mango and lychee. Finally, the intended system of partial root-zone fertigation (PRF) shall guarantee an even flowering and a better yield formation under improved use of the limited resource water. As this modern technique, which requires a higher level of irrigation-technology, cannot be immediately spread among the farmers in the region, in a parallel approach potential users shall be integrated in a participative process for adaptation and development. Water transport and irrigation shall be considered, as both factors offer a tremendous potential for water saving. Local knowledge shall be integrated in the participatory process (supported by subproject A1.2, Participatory Research) in order to finally offer adapted technologies for application within PRF systems for the different conditions of farmers in the hillsides of Northern Thailand.
Das Projekt "High density power electronics for FC- and ICE-Hybrid Electric Vehicle Powertrains (HOPE)" wird vom Umweltbundesamt gefördert und von Siemens AG durchgeführt. Objective: The project HOPE is addressing power electronics. It is based on previous EU research projects like the recently finished FW5 HIMRATE (high-temperature power modules), FW5 PROCURE (high-temperature passive components), and MEDEA+ HOTCAR (high-temperature control electronics) and other EU and national research projects. The general objectives of HOPE are: Cost reduction; meet reliability requirements; reduction of volume and weight. This is a necessity to bring the FC- and ICE-hybrid vehicles to success. WP1 defines specifications common to OEM for FC- and ICE-hybrid vehicle drive systems; Identification of common key parameters (power, voltage, size) that allows consequent standardisation; developing a scalability matrix for power electronic building blocks PEBBs. The power ranges will be much higher than those of e.g. HIMRATE and will go beyond 100 kW electric power. WP2 works out one reference mission profile, which will be taken as the basis for the very extensive reliability tests planned. WP3 is investigating key technologies for PEBBs in every respect: materials, components (active Si- and SiC switches, passive devices, sensors), new solders and alternative joinings, cooling, and EMI shielding. In WP4 three PEBBs will be developed: HDPM (high density power module) which is based on double side liquid cooling of the power semiconductor devices; IML (power mechatronics module), which is based on a lead-frame technology; and SiC-PEBB inverter (silicon carbide semiconductor JFET devices instead of Si devices). WP5 develops a control unit for high-temperature control electronics for the SiC-PEBBs. Finally WP6 works on integrating the new technologies invented in HOPE into powertrain systems and carries out a benchmark tests. All the results achieved in HOPE will be discussed intensively with the proposed Integrated Project HYSIS where the integration work will take place. It is clear from the start that many innovations are necessary to meet the overall goal.
Das Projekt "Teilprojekt 2: Akustik" wird vom Umweltbundesamt gefördert und von Stiftung Alfred-Wegener-Institut für Polar- und Meeresforschung e.V. in der Helmholtz-Gemeinschaft (AWI) durchgeführt. Diel vertical migration and geographical distribution of our target organism krill (Euphausia superba, E. crystallorophias) but also other species e.g. myctophids, copepods (Calanus propinquus, Rhincalanus gigas), and other zooplankter (salps, pteropods, chaetognaths, amphipods) are detected by means of a four-split beam acoustic array (38, 72, 120, 200 kHz). Our major questions are: Do organisms migrate daily in relation to the light field, feeding conditions and/or to the predator field? Do populations of different species and/or different developmental stages of one species segregate in certain environmental conditions or different times of the year? How does the ocean current system influence the geographical distribution of zooplankton or krill populations? Is the geographical distribution of species subject to change and if so, what are the possible causes?
Das Projekt "Forest management and habitat structure - influences on the network of song birds, vectors and blood parasites" wird vom Umweltbundesamt gefördert und von Universität Freiburg, Forstzoologisches Institut, Professur für Wildtierökologie und Wildtiermanagement durchgeführt. Forest structure is altered by humans for long times (Bramanti et al. 2009). The long lasting modification of forests pursuant to human demands modified the living conditions for birds as well as for many other animals. This included changes in resource availability (e.g., food, foraging, nesting sites) and changes of interspecific interactions, e.g., parasitism and predation (Knoke et al. 2009; Ellis et al. 2012). Also species compositions and the survivability of populations and even species are affected. The loss of foraging sites and suitable places for reproduction, the limitation of mobility due to fragmented habitats and the disturbances by humans itself may lead to more stressed individuals and less optimal living conditions. In certain cases species are not able to deal with the modified requirements and their populations will shrink and even vanish. Depending on the intensity of management and the remaining forest structure, biodiversity is more or less endangered. Especially in systems of two or more strongly connected taxa changing conditions that affect at least one part may subsequently affect the other, too. One system of interspecific communities that recently attracted the attention of biologists includes birds, blood parasites (haemosporidians) and their transmitting vectors. For instance, avian malaria (Plasmodium relictum) represents the reason for extreme declines in the avifauna of Hawaii since the introduction of respective vectors (e.g. Culicidae) during the 20th century (van Riper et al. 1986, Woodworth et al. 2005). With the current knowledge of this topic we are not able to predict if such incidences could also occur in Germany. All in all, different management strategies and intensity of forest management may influence the network of birds, vectors and blood parasites and change biodiversity. To elucidate this ecological complex, and to understand the interactions of the triad of songbirds as vertebrate hosts, dipteran vectors and haemosporidians within changing local conditions, I intend to collect data on the three taxa in differently managed forest areas, the given forest structure and the climatic conditions. I will try to explain the role of abiotic factors on infection dynamics, in detail the role of forest management intensity. Data acquisition takes place at three spatially divided locations: inside the Biodiversity Exploratory Schwäbische Alb, at the Mooswald in Freiburg, and inside the Schwarzwald.
Origin | Count |
---|---|
Bund | 449 |
Type | Count |
---|---|
Förderprogramm | 449 |
License | Count |
---|---|
open | 449 |
Language | Count |
---|---|
Deutsch | 449 |
Englisch | 423 |
Resource type | Count |
---|---|
Keine | 339 |
Webseite | 110 |
Topic | Count |
---|---|
Boden | 407 |
Lebewesen & Lebensräume | 438 |
Luft | 361 |
Mensch & Umwelt | 449 |
Wasser | 375 |
Weitere | 449 |