Das Projekt "Teil 1" wird vom Umweltbundesamt gefördert und von Universität Hohenheim, Landesanstalt für Agrartechnik und Bioenergie (740) durchgeführt. Ziel des Forschungsvorhabens ist die Entwicklung eines vollkommen neuen Verfahrens zur Erzeugung von gasförmigen Kraftstoffen aus organischen Abfallstoffen. Dazu werden erstmals fermentative Verfahren und bio-elektrische Systeme zu einem neuen Prozess kombiniert. In diesem Prozess werden die Abfallstoffe zunächst in einem 'dark fermentation reactor' fermentativ in organische Säuren umgewandelt und anschließend einer bio-elektrochemischen Konversion, bestehend aus einer Anoden- und einer Kathodenkammer zugeführt werden. An der Anode werden die gelösten organischen Säuren durch exoelektrogene Bakterien zu CO2, H+ und e- oxidiert. Während die Protonen durch eine PEM (proton exchange membrane) der Kathode zugeführt werden, geben die Bakterien die freiwerdenden Elektronen an die Anode ab, so dass diese über eine elektrische Verbindung an die Kathode weiter geleitet werden. Das gebildete CO2 wird ergänzend bedarfsgerecht der Kathode zugeführt. Die Einzelziele des Projektes sind wie folgt definiert: - Entwicklung und Erprobung eines geeigneten Anoden- und Kathodenmaterials und Optimierung der Elektrodenstruktur - Untersuchung der biologischen Diversität der Mikroorganismen an den Elektroden - Optimierung des fermentativ bioelektrochemischen Gesamtverfahrens unter technischen Aspekten im Labormaßstab. Im Berichtszeitraum wurden im Wesentlichen folgende Arbeiten durchgeführt: Ausgehend von Vorarbeiten zur Wasserstoffproduktion mit Edelstahlkathoden in dem für die Methanogenen geeigneten Kulturmedium, wurde iterativ ein auf die Anforderungen der Kathodenentwicklung hin optimiertes Reaktorkonzept entwickelt. Eine Hauptanforderung an den Reaktor ist dabei die integrierte CO2-Versorgung. Hinsichtlich der Entwicklung eines geeigneten Biofilm-Trägermaterials wurden vergleichende Untersuchungen mit Glasfasern und Nanofasern aus Polyacrylnitril (PAN) in einer Kultur von M. barkeri durchgeführt. Die PAN-Nanofasern wurden teilweise zusätzlich mit (3-Aminopropyl)triethoxysilan (ATPES) behandelt, um deren Oberfläche mit positiven Ladungen auszurüsten und so die Biofilmansiedlung zu verbessern. In verschiedenen Langzeitexperimenten mit bioelektrochemischen Systemen, die mit Perkolat als Substrat betrieben wurden, konnte gezeigt werden, dass die bereits im Perkolat bestehende Community an Organismen in der Lage ist, die enthaltenen organischen Säuren komplett zu oxidieren. Dabei konnten Stromstärken von bis zu 0,5 mA/cm2 Anodenfläche gemessen werden. Die durchgeführten Untersuchungen zum fermentativen Aufschluss der Abfallstoffe belegen, dass die gewählten Substrate sehr gut in organische Säuren überführt werden können. Es traten keinerlei Prozessstörungen auf. In HPLC-Untersuchungen konnten keine Alkohole und Zucker im Perkolat nachgewiesen werden. Die Untersuchung des Perkolats zeigte für pH-6,0 die höchsten Konzentrationen an organischen Säuren, besonders die Gehalte an Essigsäure und Buttersäure lagen im Vergleich deutlich über den Werten bei pH-5,5.
Das Projekt "Teil 3" wird vom Umweltbundesamt gefördert und von Albert-Ludwigs-Universität Freiburg, Institut für Mikrosystemtechnik durchgeführt. Ziel des Forschungsvorhabens ist die Entwicklung eines vollkommen neuen Verfahrens zur Erzeugung von gasförmigen Kraftstoffen aus organischen Abfallstoffen. Dazu werden erstmals fermentative Verfahren und bio-elektrische Systeme zu einem neuen Prozess kombiniert. In diesem Prozess werden die Abfallstoffe zunächst in einem 'dark fermentation reactor' fermentativ in organische Säuren umgewandelt und anschließend einer bio-elektrochemischen Konversion, bestehend aus einer Anoden- und einer Kathodenkammer zugeführt werden. An der Anode werden die gelösten organischen Säuren durch exoelektrogene Bakterien zu CO2, H+ und e- oxidiert. Während die Protonen durch eine PEM (proton exchange membrane) der Kathode zugeführt werden, geben die Bakterien die freiwerdenden Elektronen an die Anode ab, so dass diese über eine elektrische Verbindung an die Kathode weiter geleitet werden. Das gebildete CO2 wird ergänzend bedarfsgerecht der Kathode zugeführt. Die Einzelziele des Projektes sind wie folgt definiert: - Entwicklung und Erprobung eines geeigneten Anoden- und Kathodenmaterials und Optimierung der Elektrodenstruktur - Untersuchung der biologischen Diversität der Mikroorganismen an den Elektroden - Optimierung des fermentativ bioelektrochemischen Gesamtverfahrens unter technischen Aspekten im Labormaßstab. Im Berichtszeitraum wurden im Wesentlichen folgende Arbeiten durchgeführt: Ausgehend von Vorarbeiten zur Wasserstoffproduktion mit Edelstahlkathoden in dem für die Methanogenen geeigneten Kulturmedium, wurde iterativ ein auf die Anforderungen der Kathodenentwicklung hin optimiertes Reaktorkonzept entwickelt. Eine Hauptanforderung an den Reaktor ist dabei die integrierte CO2-Versorgung. Hinsichtlich der Entwicklung eines geeigneten Biofilm-Trägermaterials wurden vergleichende Untersuchungen mit Glasfasern und Nanofasern aus Polyacrylnitril (PAN) in einer Kultur von M. barkeri durchgeführt. Die PAN-Nanofasern wurden teilweise zusätzlich mit (3-Aminopropyl)triethoxysilan (ATPES) behandelt, um deren Oberfläche mit positiven Ladungen auszurüsten und so die Biofilmansiedlung zu verbessern. In verschiedenen Langzeitexperimenten mit bioelektrochemischen Systemen, die mit Perkolat als Substrat betrieben wurden, konnte gezeigt werden, dass die bereits im Perkolat bestehende Community an Organismen in der Lage ist, die enthaltenen organischen Säuren komplett zu oxidieren. Dabei konnten Stromstärken von bis zu 0,5 mA/cm2 Anodenfläche gemessen werden. Die durchgeführten Untersuchungen zum fermentativen Aufschluss der Abfallstoffe belegen, dass die gewählten Substrate sehr gut in organische Säuren überführt werden können. Es traten keinerlei Prozessstörungen auf. In HPLC-Untersuchungen konnten keine Alkohole und Zucker im Perkolat nachgewiesen werden. Die Untersuchung des Perkolats zeigte für pH-6,0 die höchsten Konzentrationen an organischen Säuren, besonders die Gehalte an Essigsäure und Buttersäure lagen im Vergleich deutlich über den Werten bei pH-5,5.
Das Projekt "Teil 2" wird vom Umweltbundesamt gefördert und von Karlsruher Institut für Technologie (KIT), Institut für Angewandte Biowissenschaften, Abteilung Angewandte Mikrobiologie durchgeführt. Ziel des Forschungsvorhabens ist die Entwicklung eines vollkommen neuen Verfahrens zur Erzeugung von gasförmigen Kraftstoffen aus organischen Abfallstoffen. Dazu werden erstmals fermentative Verfahren und bio-elektrische Systeme zu einem neuen Prozess kombiniert. In diesem Prozess werden die Abfallstoffe zunächst in einem 'dark fermentation reactor' fermentativ in organische Säuren umgewandelt und anschließend einer bio-elektrochemischen Konversion, bestehend aus einer Anoden- und einer Kathodenkammer zugeführt werden. An der Anode werden die gelösten organischen Säuren durch exoelektrogene Bakterien zu CO2, H+ und e- oxidiert. Während die Protonen durch eine PEM (proton exchange membrane) der Kathode zugeführt werden, geben die Bakterien die freiwerdenden Elektronen an die Anode ab, so dass diese über eine elektrische Verbindung an die Kathode weiter geleitet werden. Das gebildete CO2 wird ergänzend bedarfsgerecht der Kathode zugeführt. Die Einzelziele des Projektes sind wie folgt definiert: - Entwicklung und Erprobung eines geeigneten Anoden- und Kathodenmaterials und Optimierung der Elektrodenstruktur - Untersuchung der biologischen Diversität der Mikroorganismen an den Elektroden - Optimierung des fermentativ bioelektrochemischen Gesamtverfahrens unter technischen Aspekten im Labormaßstab. Im Berichtszeitraum wurden im Wesentlichen folgende Arbeiten durchgeführt: Ausgehend von Vorarbeiten zur Wasserstoffproduktion mit Edelstahlkathoden in dem für die Methanogenen geeigneten Kulturmedium, wurde iterativ ein auf die Anforderungen der Kathodenentwicklung hin optimiertes Reaktorkonzept entwickelt. Eine Hauptanforderung an den Reaktor ist dabei die integrierte CO2-Versorgung. Hinsichtlich der Entwicklung eines geeigneten Biofilm-Trägermaterials wurden vergleichende Untersuchungen mit Glasfasern und Nanofasern aus Polyacrylnitril (PAN) in einer Kultur von M. barkeri durchgeführt. Die PAN-Nanofasern wurden teilweise zusätzlich mit (3-Aminopropyl)triethoxysilan (ATPES) behandelt, um deren Oberfläche mit positiven Ladungen auszurüsten und so die Biofilmansiedlung zu verbessern. In verschiedenen Langzeitexperimenten mit bioelektrochemischen Systemen, die mit Perkolat als Substrat betrieben wurden, konnte gezeigt werden, dass die bereits im Perkolat bestehende Community an Organismen in der Lage ist, die enthaltenen organischen Säuren komplett zu oxidieren. Dabei konnten Stromstärken von bis zu 0,5 mA/cm2 Anodenfläche gemessen werden. Die durchgeführten Untersuchungen zum fermentativen Aufschluss der Abfallstoffe belegen, dass die gewählten Substrate sehr gut in organische Säuren überführt werden können. Es traten keinerlei Prozessstörungen auf. In HPLC-Untersuchungen konnten keine Alkohole und Zucker im Perkolat nachgewiesen werden. Die Untersuchung des Perkolats zeigte für pH-6,0 die höchsten Konzentrationen an organischen Säuren, besonders die Gehalte an Essigsäure und Buttersäure lagen im Vergleich deutlich über den Werten bei pH-5,5.
Das Projekt "Anoden auf CNT-Basis" wird vom Umweltbundesamt gefördert und von Fraunhofer-Institut für Keramische Technologien und Systeme durchgeführt. Stand der Technik sind bei Lithium-Ionen-Batterien Anoden, die aus Graphit bestehen. Nanokristallines Silicium lässt noch höhere Ladungskapazitäten zu. Nachteilig sind jedoch die geringe Leitfähigkeit des Siliciums und die Pulverisierung infolge der zyklischen Ladevorgänge. Ein aussichtsreiches Material sind auch Carbon Nanotubes (CNT). Für ungerichtete CNT werden spezifische Kapazitäten bis 180 F/g angegeben. CNT-Rasenstrukturen ermöglichen theoretisch eine weitere Erhöhung der Kapazität. Das IKTS verfolgt das Ziel, Anoden mit vertikal ausgerichteten CNT auf technisch aussichtsreichen Stromableitern herzustellen, die eine weitere Steigerung von Kapazität und Leistungsdichte bei hoher elektrochemischer Stabilität erlauben. Ein erster Schwerpunkt ist die Herstellung von gerichteten CNT-Strukturen auf elektrisch leitfähigen Unterlagen, d.h. auf aussichtsreichen Materialien für den Stromableiter. Durchgeführt werden Untersuchung zum Einfluss von Länge, Durchmesser, Ausrichtung, Dichte und Art der CNT auf die spezifische Kapazität. Eine weitere Aufgabe besteht in der Evaluierung verschiedener leitfähiger Unterlagen auf denen ein optimales CNT-Wachstum erzielt werden kann, wobei Kupfer im Fokus steht. Aufbauend auf dem ersten Arbeitspaket erfolgt die Evaluierung von Strukturen, die aus Kombinationen von gerichteten Carbon-Nanotubes und Silicium-Nanopartikeln bestehen. Die Herstellung erfolgt durch eine der CNT-Herstellung nachgeschaltete Siliciumabscheidung Solche Strukturen sind aussichtsreiche Kandidaten für das Erreichen noch höherer Ladungskapazitäten und Leistungsdichten. Die elektrochemische Charakteristik der im IKTS entwickelten Anoden auf CNT-Basis wird in einer Lithium-Ionenbatteriezelle am Fraunhofer ISC gemessen und mit anderen Anodentypen verglichen. Ausgewählt wird dann die Anode mit der höchsten Ladungskapazität und den günstigsten Herstellungskosten.
Das Projekt "Teil 1" wird vom Umweltbundesamt gefördert und von Deutsches Zentrum für Luft- und Raumfahrt e.V., Institut für Technische Thermodynamik durchgeführt. Für eine optimale Leistungsfähigkeit von Brennstoffzellen und möglichst geringe Degradation ist eine homogene elektrochemische Aktivität und Temperatur über den gesamten Bereich der Elektroden erwünscht, da eine inhomogene Stromdichte- oder Temperaturverteilung zu einer verringerten Nutzung der Reaktanden oder des Katalysators führt, was sich in einem erniedrigten Wirkungsgrad niederschlägt. Auch die Langzeitstabilität von Zellkomponenten kann durch die ungleichmäßige Verteilung der elektrischen und thermischen Eigenschaften über die Zelle negativ beeinflusst werden. Daher besteht bei den Entwicklern von Brennstoffzellen der starke Wunsch, über entsprechende zu entwickelnde analytische Methoden Informationen über die lokale Verteilung der elektrischen, chemischen und thermischen Eigenschaften zu erhalten, die für eine Verbesserung der Zellen und des Designs genutzt werden können. Im Bereich der Niedertemperatur-Polymermembran-Brennstoffzellen wurden hier vor einigen Jahren umfangreiche Entwicklungen hauptsächlich zur Messung der Stromdichteverteilung begonnen, während es im Bereich der oxidkeramischen Hochtemperaturbrennstoffzelle auf Grund der erhöhten Anforderungen bei den hohen Betriebstemperaturen von 700-1000 C bisher erst relativ wenige Ansätze für eine ortsaufgelöste Messtechnik gab. Ziel des vorliegenden Forschungsvorhabens ist das detaillierte Verständnis der grundlegenden Ursachen, insbesondere der Zusammenhänge von örtlichen Inhomogenitäten mit Betriebsbedingungen, Zellgeometrie und Zellleistung. Hierzu wird in einem integrierten Ansatz insbesondere die Kombination von hochentwickelten experimentellen Methoden mit detaillierten physikalisch-chemischen Modellen und Simulationsrechnungen zum Einsatz gebracht. Die Simulationsrechnungen erlauben die Vorhersage der örtlich verteilten Konzentrationen von Gasphasen-Spezies und Temperatur sowohl in den Gaskanälen als auch innerhalb der porösen Elektroden. Durch das Zusammenspiel von Experiment und Modellierung in einem iterativen Prozess soll ein hinreichend detailliertes Modell erhalten werden, das den komplexen Vorgängen innerhalb der SOFC gerecht wird.
Das Projekt "Teil 2" wird vom Umweltbundesamt gefördert und von Universität Heidelberg, Interdisziplinäres Zentrum für Wissenschaftliches Rechnen durchgeführt. Für eine optimale Leistungsfähigkeit von Brennstoffzellen und möglichst geringe Degradation ist eine homogene elektrochemische Aktivität und Temperatur über den gesamten Bereich der Elektroden erwünscht, da eine inhomogene Stromdichte- oder Temperaturverteilung zu einer verringerten Nutzung der Reaktanden oder des Katalysators führt, was sich in einem erniedrigten Wirkungsgrad niederschlägt. Auch die Langzeitstabilität von Zellkomponenten kann durch die ungleichmäßige Verteilung der elektrischen und thermischen Eigenschaften über die Zelle negativ beeinflusst werden. Daher besteht bei den Entwicklern von Brennstoffzellen der starke Wunsch, über entsprechende zu entwickelnde analytische Methoden Informationen über die lokale Verteilung der elektrischen, chemischen und thermischen Eigenschaften zu erhalten, die für eine Verbesserung der Zellen und des Designs genutzt werden können. Im Bereich der Niedertemperatur-Polymermembran-Brennstoffzellen wurden hier vor einigen Jahren umfangreiche Entwicklungen hauptsächlich zur Messung der Stromdichteverteilung begonnen, während es im Bereich der oxidkeramischen Hochtemperaturbrennstoffzelle auf Grund der erhöhten Anforderungen bei den hohen Betriebstemperaturen von 700-1000 C bisher erst relativ wenige Ansätze für eine ortsaufgelöste Messtechnik gab. Ziel des vorliegenden Forschungsvorhabens ist das detaillierte Verständnis der grundlegenden Ursachen, insbesondere der Zusammenhänge von örtlichen Inhomogenitäten mit Betriebsbedingungen, Zellgeometrie und Zellleistung. Hierzu wird in einem integrierten Ansatz insbesondere die Kombination von hochentwickelten experimentellen Methoden mit detaillierten physikalisch-chemischen Modellen und Simulationsrechnungen zum Einsatz gebracht. Die Simulationsrechnungen erlauben die Vorhersage der örtlich verteilten Konzentrationen von Gasphasen-Spezies und Temperatur sowohl in den Gaskanälen als auch innerhalb der porösen Elektroden. Durch das Zusammenspiel von Experiment und Modellierung in einem iterativen Prozess soll ein hinreichend detailliertes Modell erhalten werden, das den komplexen Vorgängen innerhalb der SOFC gerecht wird.
Das Projekt "Treatment of electrolytes from a zinc electrolysis plant by eed (electro-electro-dialysis)" wird vom Umweltbundesamt gefördert und von Preussag-Weser-Zink durchgeführt. Objective: To build and operate a dialysis cell of industrial size together with the necessary ancillary equipment to test the EED process in long term commercial use. The EED allows a higher yield of zinc connected with considerable energy savings for removal of magnesium from the electrolyte compared with alternative possibilities. General Information: Preussag-Weser-Zink GmbH operates in Nordenham (Germany) a plant for the hydrometallurgical-electrolytic production of zinc with a capacity of 110 000 tons of electrolytic zinc per year. During the electrolysis an enrichment of the magnesium content of the electrolyte taken place. To limit this enrichment, a special treatment of a part of the electrolyte stream is necessary. Per ton of produced zinc generally 0.1 to 0.2 m3 of electrolyte are subjected to this treatment which consists of neutralizing the electrolyte with zinc. This leads to the formation of 30 to 70 Kg per ton of produced zinc, which is costly and energy intensive to dispose of. Within the framework of this project it is intended to subject a part of the magnesium containing neutral zinc sulfate (neutral lye) as a catholyte to an Electro-Electro-Dialysis (EED). In the EED more than 80 per cent of the zinc is separated in the usual quality at the cathode while a corresponding part of sulfate ions go into the anolyte and arerecirculated into the process. The zinc which has and been separated at the cathode in the EED is recovered in a second process step by selective precipitation. EED was developed in the research institute of Minemet in France and pilot testing took place at Preussag-Weser-Zink GmbH, during 12 months. The pilot plant consisted of 2-3 dialysis cells producing daily 3 Kg of zinc per cell. Results from the pilot trials confirmed the previous laboratory work. The demonstration plant consisted of a dialysis cell with five industrially sized cathodes of 1,2 m2 active surface and additional equipment for the treatment of the catholyte by selective precipitation. The production capacity of the demonstration plant was 50 kg zinc per day. From the laboratory work and the previous pilot tests for a 110,000. For a 110,000 tons zinc producing plant the estimated energy saving amounts to 1,400 TOE/year, in addition to which 91 000 000 000 KJ/a of primary energy are substituted with 32.3 000 000 000 KJ/a of electrical energy. On the basis of the above saving, the cost of handling 1 m3 of the electrolyte solution is calculated to be DM 168. compared to the current disposal cost (to a third party) of DM 198. The process is covered by a joint patent and a cooperation contract covers the relationship between Minemet and Preussag. Achievements: Important technical know-how for electrolytic processes using membranes was generated. Among others the cell with compartments for cathodes and anodes and the membranes fixing system had to be designed and materials and membranes chosen. The membrane IONAC MA 3475 from SYBRON CHEMICALS gave...
Das Projekt "Teilprojekt: MEA-Entwicklung für den Mikro-Stack" wird vom Umweltbundesamt gefördert und von BASF Fuel Cell GmbH durchgeführt. Gesamtziel des Vorhabens ist die Entwicklung eines hoch integrierten Mikrobrennstoffzellensystems, das hinsichtlich Kosten und Gewicht das Optimum des Standes der Technik darstellt. Dazu wird ein Mikro-Brennstoffzellesystem auf Basis von Hochtemperatur-PEM-Technologie entwickelt. PEMEAS entwickelt dafür eine kostenoptimierte Membran-Elektroden-Einheit (MEA) und unterstützt die Projektpartner bei der Anwendung der MEAs. Schwerpunkt bei PEMEAS ist die Reduktion der MEA-Kosten durch Verminderung des Platingehalts um 40 Prozent bei gleich bleibender Leistung. Von PEMEAS werden ausreichende Mengen an MEAs für die Projektpartner hergestellt (Test und Prototyp). Weiterhin wird ein fertigungsfreundliches MEA Design entwickelt, das für den Schritt in die kostengünstige Massenproduktion geeignet ist. PEMEAS unterstützt die Projektpartner bei der Anwendung der MEAs, wie zum Beispiel bei der Auswahl von Stack-Materialien und bei der Ermittlung geeigneter Betriebsbedingungen. Die von PEMEAS entwickelte kostenoptimierte MEA kann über MIMEMIZ hinaus bei anderen Kunden aus dem Bereich der Mikro-BZ eingesetzt werden.
Das Projekt "BASTA: Batterien für Strom für den Tank und den Antrieb" wird vom Umweltbundesamt gefördert und von Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg durchgeführt. Ziel des Vorhabens ist die Entwicklung eines neuartigen, langlebigen, kostengünstigen und sicheren Lithium-Ionen Systems für die Anwendung in der Elektromobilität und als stationäre Zwischenspeicher. Die Ziele des Teilprojekts sind die Entwicklung eines manganbasierten phosphatischen Kathodenmaterials durch eigene Forschung und die begleitende Evaluierung von Proben der Südchemie, die Qualifizierung von Separatoren der Firma Freudenberg , die Rezeptur- und Elektrodenentwicklung, die Herstellung entsprechender Elektrodenpaarungen und die Implementierung der Komponenten in 18650 Rundzellen. Rezepturen werden an die VWVM für deren Zellfertigung übergeben. Die Vorhaben umfassen im Einzelnen: Die Entwicklung neuartiger Kathodenmaterialien auf Phosphatbasis über verschiedene Synthesewege und in verschiedenen Zusammensetzungen, die physikalische und chemische Analyse sowie elektrochemische Vorcharakterisierung von eigenen Materialien sowie von Mustermaterialien der Südchemie in T- oder Pouch-Zell-Design. Evaluierung der zu entwickelnden Separatoren von Freudenberg im Hinblick auf deren Verarbeitbarkeit in 18650 Testzellen durch mechanische Test und Untersuchungen zur Verträglichkeit mit der neuen Zellchemie. usw.
Das Projekt "Teilprojekt 5" wird vom Umweltbundesamt gefördert und von Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Institut für Solarforschung (SF), Standort Köln durchgeführt. HyCats soll eine skalierbare Technologie für eine wirtschaftliche Herstellung von H2 zur Umsetzung mit CO2 bereitstellen. Durch Zusammenarbeit von Industrie, angewandter Forschung und Grundlagenforschung sollen systematisch neue Photokatalysatoren für die Wasserspaltung und die zugehörige Reaktortechnik entwickelt und erprobt werden. Als Benchmark wird zunächst eine Effizienzsteigerung um den Faktor 2 gegenüber dem Stand der Technik angestrebt. Das Projekt soll die erforderlichen Entwicklungen anstoßen, um bis 2020 eine Netzparität zu erreichen. Synthesen werden im Hochdurchsatzbetrieb mit einem von Zinsser entwickelten Syntheseroboter am LIKAT durchgeführt, die H2-Entwicklung wird direkt am Syntheseroboter gemessen. Auf Basis der Ergebnisse des LIKAT sollen bei HCST Proben unter produktionsanalogen Bedingungen hergestellt werden. LUH wird die Materialien von HCST und LIKAT sowie die Elektroden von ODB unter künstlicher Solarstrahlung und mit monochromatischer Strahlung photochemisch und spektroskopisch charakterisieren. Theoretische Simulationen der UBonn fließen in die Syntheseplanung des LIKAT ein und werden mit Messergebnissen der LUH abgeglichen. Das DLR wird aussichtsreiche Nutzungsmöglichkeiten mit konzentrierter Solarstrahlung testen. ODB wird dünne Schichten aus Proben der Partner herstellen und in einem Teststand für die Bewertung von Elektrodensystemen aufbauen. Die Zellen werden in Feldversuchen dem Sonnenlicht in Langzeitmessungen ausgesetzt.
Origin | Count |
---|---|
Bund | 1512 |
Type | Count |
---|---|
Förderprogramm | 1512 |
License | Count |
---|---|
open | 1512 |
Language | Count |
---|---|
Deutsch | 1512 |
Englisch | 104 |
Resource type | Count |
---|---|
Keine | 776 |
Webseite | 736 |
Topic | Count |
---|---|
Boden | 658 |
Lebewesen & Lebensräume | 662 |
Luft | 796 |
Mensch & Umwelt | 1512 |
Wasser | 502 |
Weitere | 1512 |