API src

Found 114 results.

Related terms

Sub project: Smart Services

Das Projekt "Sub project: Smart Services" wird vom Umweltbundesamt gefördert und von PSI Energy Markets GmbH durchgeführt. Fokussiert wird die Konzeption, Entwicklung und prototypische Implementierung einer Plattform zur Synchronisation industrieller Verbraucher (als Flexibilitätscluster) mit dezentralen Erzeugern (unter anderem regenerativer Energie), die in virtuellen Kraftwerken zusammengefasst werden. Kern der Plattform ist ein Mechanismus, der die Flexibilität der Verbraucher bewertet und ihnen damit eine Partizipation am Energiemarkt (Regelenergie-, Spotmarkt) ermöglicht. Eine Synchronisation auf lokaler Ebene (Verteilnetz) ist dabei einem Ausgleich auf überregionaler Ebene (Übertragungsnetz) vorzuziehen. Prototypisch wird das Projekt in der Modellregion Aachen umgesetzt und leistet einen Beitrag zur Energiewende mit Bezug zu den Zielen Wirtschaftlichkeit, Umweltverträglichkeit und Versorgungssicherheit.

TOP-Energy

Das Projekt "TOP-Energy" wird vom Umweltbundesamt gefördert und von RWTH Aachen University, Institut für Thermodynamik, Lehrstuhl für Technische Thermodynamik durchgeführt. Aufgrund gestiegener Umwelt- und Klimaschutzanforderungen sollten Energieumwandlungsprozesse effizient, ressourcenschonend und emissionsarm gestaltet werden. Veraltete oder nicht optimal genutzte Energieanlagen verursachen unnötige Kosten und führen darüber hinaus zu vermeidbaren Schäden an unserer Umwelt. Somit bestehen sowohl wirtschaftliche als auch ökologische Interessen daran, die zur Verfügung stehende Energie möglichst optimal zu nutzen. Die Energiekosten liegen oft in der Größenordnung des Unternehmensgewinns, ein reduzierter Energieeinsatz wirkt sich demnach spürbar auf das Unternehmensergebnis aus. Dennoch werden betriebsinterne energietechnische Prozesse aus verschiedenen Gründen selten systematisch und tiefgehend analysiert und optimiert. Ein Grund ist häufig, dass Unternehmen nicht bereit sind, den dafür notwendigen hohen Aufwand und die erforderlichen detaillierten Fachkenntnisse zu finanzieren. Um den hohen Aufwand und damit die Kosten einer Analyse und Verbesserung der betrieblichen Energieanlagen zu reduzieren und darüber hinaus die Qualität der Analyse zu verbessern, bietet sich ein rechnergestütztes Vorgehen an. Vor diesem Hintergrund wurde im Rahmen eines von der Arbeitsgemeinschaft industrieller Forschungsvereinigungen 'Otto von Guericke e.V. (AIF) geförderten Projektes die TOP-Energy Software entwickelt, die bereits in der Konzeptionsphase eines Industrieprojektes eine zuverlässige, schnelle und kosteneffiziente Analyse und Bewertung erlaubt. Das Akronym TOP-Energy steht für 'Toolkit for Optimization of Industrial Energy Systems. Das Hauptziel von TOP-Energy liegt in der Unterstützung des Analyse- und Optimierungsprozesses einer industriellen Energieberatung. Dazu stellt das System einen Satz von Modulen zur Dokumentation, Analyse, Simulation und Bewertung hinsichtlich ökonomischer, energetischer und umweltrelevanter Faktoren bereit. Um einen integrierten Arbeitsfluss zu ermöglichen, bilden die Module in ihrer Kombination ein Geschäftsprozessmodell ab, das sich an der VDI 3922 (Energieberatung für Industrie und Gewerbe) orientiert. An dem zum 31.12.2004 abgeschlossenen TOP-Energy Projekt schließt sich seit dem 01.01.2007 das TOP-Energy+ Projekt an, welches dem Zweck dient, TOP-Energy auf einen Stand zu bringen, der einen sich selbst tragenden Fortbestand und die privatwirtschaftlich finanzierte Weiterentwicklung der Software ermöglicht. Insbesondere sollen inzwischen erkannte Hemmnisse für die verbreitete Anwendung beseitigt werden.

Soil-gas transport-processes as key factors for methane oxidation in soils

Das Projekt "Soil-gas transport-processes as key factors for methane oxidation in soils" wird vom Umweltbundesamt gefördert und von Universität Freiburg, Institut für Geo- und Umweltnaturwissenschaften, Professur für Bodenökologie durchgeführt. Methane (CH4) is a major greenhouse gas of which the atmospheric concentration has more than doubled since pre-industrial times. Soils can act as both, source and sink for atmospheric CH4, while upland forest soils generally act as CH4 consumers. Oxidation rates depend on factors influenced by the climate like soil temperature and soil moisture but also on soil properties like soil structure, texture and chemical properties. Many of these parameters directly influence soil aeration. CH4 oxidation in soils seems to be controlled by the supply with atmospheric CH4, and thus soil aeration is a key factor. We aim to investigate the importance of soil-gas transport-processes for CH4 oxidation in forest soils from the variability the intra-site level, down to small-scale (0.1 m), using new approaches of field measurements. Further we will investigate the temporal evolution of soil CH4 consumption and the influence of environmental factors during the season. Based on previous results, we hypothesize that turbulence-driven pressure-pumping modifies the transport of CH4 into the soil, and thus, also CH4 consumption. To improve the understanding of horizontal patterns of CH4 oxidation we want to integrate the vertical dimension on the different scales using an enhanced gradient flux method. To overcome the constraints of the classical gradient method we will apply gas-diffusivity measurements in-situ using tracer gases and Finite-Element-Modeling. Similar to the geophysical technique of Electrical Resistivity Tomography we want to develop a Gas Diffusivity Tomography. This will allow to derive the three-dimensional distribution of soil gas diffusivity and methane oxidation.

Tools for Sustainabiltity Impact Assessment of the Forestry- Wood Chain

Das Projekt "Tools for Sustainabiltity Impact Assessment of the Forestry- Wood Chain" wird vom Umweltbundesamt gefördert und von Universität Hamburg, Department für Biologie, Zentrum Holzwirtschaft des Johann Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei durchgeführt. The objective of EFORWOOD is to develop a quantitative decision support tool for Sustainability Impact Assessment of the European Forestry-Wood Chain (FWC) and subsets thereof (e.g. regional), covering forestry, industrial manufacturing, consumption and recycling. The objective will be achieved by:a) defining economic, environmental and social sustainability indicators ,b) developing a tool for Sustainability Impact Assessment by integrating a set of models ,c) supplying the tool with real data, aggregated as needed and appropriate,d) testing the tool in a stepwise procedure allowing adjustments to be made according to the experiences gained,e) applying the tool to assess the sustainability of the present European FWC (and subsets thereof) as well the impacts of potential major changes based on scenarios,f) making the adapted versions of the tool available to stakeholder groupings (industrial, political and others).The multi-functionality of the FWC is taken into account by using indicators to assess the sustainability of production processes and by including in the analysis the various products and services of the FWC. Wide stakeholder consultations will be used throughout the process to reach the objective. EFORWOOD will contribute to EU policies connected to the FWC, especially to the Sustainable Development Strategy. It will provide policy-makers, forest owners, the related industries and other stakeholders with a tool to strengthen the forest-based sector's contribution towards a more sustainable Europe, thereby also improving its competitiveness. To achieve this, EFORWOOD gathers a consortium of highest-class experts, including the most representative forest-based sector confederations.EFORWOOD addresses with a high degree of relevance the objectives set out in the 3rd call for proposals addressing Thematic Sub-priority 1.1.6.3 Global Change and Ecosystems, topic V.2.1. Forestry/wood chain for Sustainable Development. Prime Contractor: Stiftelsen Skogsbrukets Forskningsinstitut, Skogforsk; Uppsala; Sweden.

Industrial Waste Management Concept for the Region of Grand-Casablanca^Concept pour la gestion des déchets industriels de la région du Grand Casablanca (FRA)

Das Projekt "Industrial Waste Management Concept for the Region of Grand-Casablanca^Concept pour la gestion des déchets industriels de la région du Grand Casablanca (FRA)" wird vom Umweltbundesamt gefördert und von Öko-Institut. Institut für angewandte Ökologie e.V. durchgeführt.

Modelling the impact of global warming on the trophic state of the upper ocean

Das Projekt "Modelling the impact of global warming on the trophic state of the upper ocean" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum für Ozeanforschung Kiel (GEOMAR) durchgeführt. The main aim of the proposed research is a quantitative evaluation of the potential impact of global warming on the trophic balance of the upper ocean. Primary production, as well as autotrophic and heterotrophic respiration are all expected to increase with temperature, and a number of experimental culture studies suggest that the increase with temperature is more pronounced for respiration than for production. This notion has been further confirmed on the ecosystem level in recent short-term mesocosm studies. According to these results, an expected direct effect of global warming is a weakening of the biological carbon pump. In contrast to indirect effects arising from changes in circulation and stratification, such a direct temperature effect has not yet been investigated quantitatively on a global scale. Using an Earth System Model of intermediate complexity, the proposed study will investigate the sensitivity of the model's biological pump to different parameterisations of temperature effects on autotrophic and heterotrophic processes, each calibrated by available experimental data from culture and mesocosm studies. The ability of different parameterisations to closely reproduce regional patterns of biogeochemical tracer distributions will first be evaluated for pre-industrial steady-state solutions. In a second step, the model will be forced with IPCC-type CO2 emission scenarios over the 21st century in order to estimate the impact of direct temperature effects on the marine biota relative to indirect effects via changes in circulation and stratification.

Improved Methods for the Assessment of the Generic Impact of Noise in the Environment (IMAGINE)

Das Projekt "Improved Methods for the Assessment of the Generic Impact of Noise in the Environment (IMAGINE)" wird vom Umweltbundesamt gefördert und von Müller-BBM Gesellschaft mit beschränkter Haftung durchgeführt. For the production of strategic noise maps as required under the EU Directive 2002/49/EC, improved assessment methods for environmental noise will be required. Noise from any major source, be it major roads, railways, airports or industrial activities in agglomerations, needs to be included in the noise mapping. For road and rail, improved methods will be developed in the 5th frame work Harmonoise project. These methods will be adopted to develop methods for aircraft and industrial noise in the IMAGINE project proposed here. Noise source databases to be developed in IMAGINE for road and rail sources will allow a quick and easy implementation of the methods in all member states. Measured noise levels can add to the quality of noise maps because they tend to have better credibility than computed levels. In the project proposed here, guidelines for monitoring and measuring noise levels will be developed, that can contribute to a combined product (measurement and computation) that has high quality and high credibility. Noise action plans shall be based on strategic noise maps. The IMAGINE project will develop guidelines for noise mapping that will make it easy and straightforward to assess the efficiency of such action plans. Traffic flow management will be a key element of such action plans, both on a national and a regional level. Noise mapping will be developed into a dynamic process rather than a static presentation of the situation. IMAGINE will provide the link between Harmonoise and the practical process of producing noise maps and action plans. It will establish a platform where experts and end users can exchange their experience and views. This platform should continue after the project and provide a basis for exploitation to the IMAGINE results. me Contractor: Detalrail B.V.; Utrecht; Netherlands.

Further treatment of digested blackwater for extraction of valuable components and conversion to dry matter

Das Projekt "Further treatment of digested blackwater for extraction of valuable components and conversion to dry matter" wird vom Umweltbundesamt gefördert und von Technische Universität Hamburg-Harburg, Institut für Abwasserwirtschaft und Gewässerschutz B-2 durchgeführt. Phosphorus and nitrogen are valuable and should not be wasted or even worse recycled to the environment. An important resource in the sludge is nutrients which can be utilized through using sludge as fertilizer in the agriculture. Wastewater and excreta contain valuable nutrients that can be used in agriculture and aquaculture. Most of the nutrients, like phosphorous (P) and nitrogen (N), that a person consumes end up in the excreta. Nutrients are needed in developing countries as much as developed ones. Therefore, they should not be wasted. In nature there is no waste, all products of living things are used as raw materials by others (Esrey et al, 1998). Ecological sanitation systems (also called ecosan') are closed-loop systems, which treat human excreta as a resource. In this system, excreta are processed on site until they are free of pathogenic (disease-causing) organisms. Afterwards, sanitized excreta are recycled by using them for agricultural purposes. Key features of ecosan are therefore: - prevention of pollution and disease caused by human excreta; - treatment of human excreta as a resource rather than as a waste product; and - recovery and recycling of the nutrients. The problem of nutrient recovery from municipal sewage or excess sludge is not a new problem. In the literature, several papers have addressed the recovery of ammonia or phosphate from industrial and domestic wastewater, but not much with black water. So far many attempts have been made to control the process of self-deposition and recover nutrients as a fertilizer, which can be used directly for agricultural purposes as ecological sanitation advises. The aim of this research project is to find out further treatment methods of digested black water for extraction of valuable nutrients and convert them to dry matter and find solutions for dense urban areas and make usable compounds easier transportable.

Immobilisation of arsenic in paddy soil by iron(II)-oxidizing bacteria

Das Projekt "Immobilisation of arsenic in paddy soil by iron(II)-oxidizing bacteria" wird vom Umweltbundesamt gefördert und von Universität Tübingen, Institut für Geowissenschaften, Zentrum für Angewandte Geowissenschaften durchgeführt. Arsenic-contaminated ground- and drinking water is a global environmental problem with about 1-2Prozent of the world's population being affected. The upper drinking water limit for arsenic (10 Micro g/l) recommended by the WHO is often exceeded, even in industrial nations in Europe and the USA. Chronic intake of arsenic causes severe health problems like skin diseases (e.g. blackfoot disease) and cancer. In addition to drinking water, seafood and rice are the main reservoirs for arsenic uptake. Arsenic is oftentimes of geogenic origin and in the environment it is mainly bound to iron(III) minerals. Iron(III)-reducing bacteria are able to dissolve these iron minerals and therefore release the arsenic to the environment. In turn, iron(II)-oxidizing bacteria have the potential to co-precipitate or sorb arsenic during iron(II)- oxidation at neutral pH followed by iron(III) mineral precipitation. This process may reduce arsenic concentrations in the environment drastically, lowering the potential risk for humans dramatically.The main goal of this study therefore is to quantify, identify and isolate anaerobic and aerobic Fe(II)-oxidizing microorganisms in arsenic-containing paddy soil. The co-precipitation and thus removal of arsenic by iron mineral producing bacteria will be determined in batch and microcosm experiments. Finally the influence of rhizosphere redox status on microbial Fe oxidation and arsenic uptake into rice plants will be evaluated in microcosm experiments. The long-term goal of this research is to better understand arsenic-co-precipitation and thus arsenic-immobilization by iron(II)-oxidizing bacteria in rice paddy soil. Potentially these results can lead to an improvement of living conditions in affected countries, e.g. in China or Bangladesh.

Main Annulus Gas Path Interactions (MAGPI)

Das Projekt "Main Annulus Gas Path Interactions (MAGPI)" wird vom Umweltbundesamt gefördert und von Rolls-Royce Deutschland Ltd & Co KG durchgeführt. In a modern aero engine, up to 20Prozent of the main annulus flow is bled off to perform cooling and sealing functions. The vicinity of these bleed ports and flow sinks is characterised by complex unsteady swirling flows, which are not fully understood. Even the most up-to-date numerical tools have difficulties predicting the behaviour of the secondary flow system when interacting with the main annulus. The project addresses interactions between main gas path and secondary flow systems in commercial gas turbines in response to Research Activity AERO-2005-1.3.1.2a Concepts and technologies for improving engine thermal efficiency and reducing secondary air losses. Experiments are planned on turbine disc rim and compressor manifold cavity heat transfer, hot gas ingestion, and spoiling effects of cooling air flow and their impact on turbine and compressor performance, as well as a reduction of secondary air losses. The experimental data will be used for better understanding of the complex flow phenomena and improvements of platform and cavity design. Furthermore, the industrial partners will validate their design tools with these test data and improve their prediction capability of secondary flow systems when interacting with the main gas path. The expected results are a reduction of cooling and sealing airflow rates, improvements of the turbine and compressor efficiency and increase of the safety margin of the engine components by better cooling. Expected technical results are: - Knowledge of the interaction phenomena and its effect on cavity heat transfer, spoiling and performance, - Experimental results for validation of improved numerical tools for secondary flow systems, - Optimised design methods and CFD best practice guidelines. The targeted outcome will contribute to the ACARE goal of reduced CO2 emissions via reduced fuel burn of 2Prozent to improve the environment and strengthening the competitiveness of European gas turbine manufacturers.

1 2 3 4 510 11 12