API src

Found 267 results.

Entwicklung eines Waermewandlers, der bei 130 Grad C Betriebsdampf erzeugt

Das Projekt "Entwicklung eines Waermewandlers, der bei 130 Grad C Betriebsdampf erzeugt" wird vom Umweltbundesamt gefördert und von MAN durchgeführt. General Information: Different possibilities have been studied to produce heat at 125 - 145 degrees c for a paper dryer from its waste heat at 80 - 90 degrees c. A comparison of the possible systems was made regarding technical feasibility, energy saving potential and costs. The two-staged absorption heat pump with libr/h2o was found to be able to work under the specific operating conditions of the reference paper machine. A 100 kw heat pump of this type was built and tested on a test rig. As a result of these tests the following modifications are being brought about: - installation of a pump to control the solution and avoid crystallization of libr - continuous measurement of the libr concentration - design of a new libr solution distribution system - replacement of the solution heat exchanger by a new apparatus with low losses.

Energy in Minds

Das Projekt "Energy in Minds" wird vom Umweltbundesamt gefördert und von Steinbeis Innovation gGmbH - Steinbeis Innovationszentrum (SIZ) Energie-, Gebäude- und Solartechnik EGS durchgeführt. Das europaweite Förderprojekt hat zum Ziel, den Anteil fossiler Energieträger und den Ausstoß von CO2 in vier europäischen Städten innerhalb von 5 Jahren um 20 Prozent bis 30 Prozent zu senken. Teilnehmer sind Neckarsulm in Deutschland, die Energieregion Weiz-Gleisdorf in Österreich, Falkenberg in Schweden und Zlin in Tschechien. Neben diesen Städten nehmen Gornji Grad in Slowenien und die Region Turin in Italien als Beobachterstädte an dem Projekt teil. Alle Partner sind führend auf dem Gebiet regenerativer Energiesysteme und rationeller Energieverwendung. Maßnahmen: - Sensibilisierung der Bevölkerung für Energiefragen, - Energieagenturen werden eingerichtet bzw. ausgebaut, - ein jährlich stattfindender Energie-Tag' wird eingeführt, - Durchführung von Informationskampagnen, - Energiechecks und Gebäudesanierungen, - Realisierung von Sonnenkollektoren und Photovoltaikanlagen, - alte Heizungsanlagen privater Haushalte werden durch CO2-neutrale Holzpellet-Heizungen ersetzt, - biomassebetriebene Heizkraftwerke sollen die Effizienz bestehender Nahwärmeversorgung verbessern. Projekte der Partnerstädte: Im Rahmen des Projekts werden innovative Energietechnologien getestet, weiterentwickelt, ausgewertet und optimiert. Neckarsulm: Realisierung einer solarbetriebenen Klärschlamm-Trocknungsanlage, - Durchführung eines Feldversuches mit Holzpellet-Stirling Motoren. Weiz-Gleisdorf: Schaffung einer Infrastruktur zur Belieferung mit Pflanzenöl, - Fahrzeugtests mit dem Kraftstoff-Pflanzenöl. Falkenberg: Errichtung von Windturbinen, - Untersuchung passiver Kühlung mit der innovativen PCM-Technik. Zlin: Nutzung von Energie aus der Abfallverbrennung. Ein wichtiger Aspekt während der gesamten Projektdauer ist die Zusammenarbeit, der Erfahrungsaustausch, die Wissensverbreitung aller Partner inner- und außerhalb des Konsortiums. Energy in Minds.' - Visionen: Dieses Forschungsprojekt soll Initiativen anregen, unterstützend wirken, um das Energiebewußtsein der Bevölkerung positiv zu verändern und zu stärken. STZ-EGS ist Initiator und Koordinator der 18 Vertragspartner.

Windenergie fuer die bebaute Umgebung

Das Projekt "Windenergie fuer die bebaute Umgebung" wird vom Umweltbundesamt gefördert und von Universität Stuttgart, Institut für Baukonstruktion und Entwerfen Lehrstuhl 1 durchgeführt. General Information: Acceptability of wind turbines has met much opposition in recent years, partially because they are frequently seen as sharply contrasting intrusions into the natural landscape, since no other man-made structures are normally found around them. This proposal will address the acceptability issues by developing and integrating turbines into built environment in order to bring power generation closer to usage and also to contribute to the 'zero energy building' goal. It is also recognised that most built-up areas in Europe have low-to-moderate wind speed regime, partially because of the effect that increased surface roughness has on an atmospheric boundary layer profile. For these reasons wind applications in built-up areas have to fulfils several specific requirements which will be addressed in the proposal. The key objectives are: 1. to develop wind enhancement and integration techniques for low to moderate wind speed areas (2.5 to 5 m/s annual average) in order to increase the 'qualifying land mass area' for wind utilization in the AEU by improving the annual energy yield per installation. Particular attention would be given to wind concentration techniques using optimised building forms and purpose-made solid structures to create the 'accelerated wind environment'. 2. to develop turbine specification to cater for the above applications. Additionally these turbines would have to be closely controllable, with low noise emissions and be suitable for sensitive environmental integration in or around inhabited areas. All important environmental implications would be investigated. 3. to prove/demonstrate the above techniques on a scaled model in the field. 4. to assess and improve prospects for social, aesthetical and planning acceptability of such wind energy applications. There are specific requirements that wind turbines for inhabited areas must satisfy in response to specific problems related to this type of application. They are going to be specifically addressed in this project. 1. Physical Safety. Prevention of injury to humans, birds, etc. will be an important aspect of urban application. Safety could be compromised due to reasons like blade rotation, high winds and possible blade shedding due to material fatigue. 2. Noise. The noise levels at neighbouring properties would not normally be allowed to exceed the level of background noise or 45 dB(A), whichever is higher. For this reason, quiet turbines are needed. The mechanical gear would have to be placed in an acoustic enclosure. Special types of control may have to be implemented in order to control the rotational speed in accordance with the background noise level at reference points in the surroundings. 3. Vibration and Resonance. Special structural provisions at the interface between the turbines and surrounding structures may be needed to avoid these effects... Prime Contractor: BDSP Partnership, London.

Erzeugung von Kraft und Waerme in kleinem Massstab aus Bio-Rohoel mittels Stirling-Motor

Das Projekt "Erzeugung von Kraft und Waerme in kleinem Massstab aus Bio-Rohoel mittels Stirling-Motor" wird vom Umweltbundesamt gefördert und von WS Wärmeprozesstechnik GmbH durchgeführt. General Information/Objectives of the Project: The main objectives of this project include: - the development of feedstock logistics for BCO production via fast pyrolysis - the scale-up potential of biomass fast pyrolysis will be clearly deducted - the production of BCO for fuelling a Stirling engine for CHP generation - the development of a suitable burner to fuel BCO and further adaptations in an existing Stirling engine - the techno-economics of the technology including Life Cycle Assessment (LCA) the market studies for the penetration of both fast pyrolysis technology and end-use applications of BCO. Technical Approach: Renewable energies, and in particular biomass, are among the most suitable options to gradually replace conventional energy sources and stabilise CO2 emissions related to electricity and heat generation. A liquid fuel derived from solid biomass by fast pyrolysis (Bio-Crude-Oil or BCO), will be of great interest for the fuelling of efficient, in the small-scale (less than 150 kWe) engines for Combined Heat and Power (CHP) production. The project will consist of 6 main tasks, namely: Task 0: Project co-ordination; Task 1: Production, characterisation and supply of feedstock for BCO Task 2: Production and characterisation of BCO; Task 3: Fast pyrolysis scale-up potential; Task 4: Usage of BCO in a Stirling engine for electricity production, performance and emissions; Task 5: Assessment of techno-economics including LCA and market studies. Expected Achievements: It is expected that immediately after the end of this project, pilot plants can be safely designed for different suitable sites in Europe for demonstration and market introduction. The consortium comprises well experienced partners from applied research and technological promotion, education, industry as well as an international organisations which serves an overall EU policy. Hence, the expected achievements of the project will result in the following industrial benefits: - the production and logistics of suitable feedstocks will be optimised - the production of the BCO will be technically proven and - the scale-up potential of the fast pyrolysis technology will be duly investigated - the combustion of BCO in the burner of a Stirling engine for CHP production will be mastered - the emissions of (NOX, SOx and particulates) will be minimised in accordance with EU requirements - the economics of the entire process from energy crop to CHP will be analysed and evaluated - the market studies for the fast pyrolysis technology end end-use applications will be carried out. As the overall objective of this project is the preparation of the BCO production technology for industrial market introduction, the partners involved in the project will take an immediate and direct advantage of the results... Prime Contractor: Agricultural University of Athens, Laboratory of Farm Structures, Department of Land Reclamation and Agricultural Engineering; Attiki/Greece.

Entwicklung von CIS-Modulen auf Floatglas-Substraten

Das Projekt "Entwicklung von CIS-Modulen auf Floatglas-Substraten" wird vom Umweltbundesamt gefördert und von Siemens Solar GmbH durchgeführt. General Information/PROJECT OBJECTIVES: Based on the improved laboratory technology for small CIS - modules on 10 cm x 10 cm substrates R and D activities of Siemens Solar and St. Gobain are combined to scale up to 30 cm x 30 cm prototype modules. Primary focus is on manufacturing issues in order to reduce the PV module costs down to less than 1 ECU/Wp for a further mass production. The main points to be demonstrated in the project are: - module efficiencies of 10 - 12 per cent; - high process yields and reproducibility; - pass IEC 12 15 PV module test (ISPRA - certificate); - in line processing capability of all coating steps; - process control methods and tools; - low - cost processes by employing non toxic materials and compounds; Technical Approach: Siemens Solar's present CIS technology has proven capability to fabricate mini modules on a 10 cm x 10 cm substrate with an average efficiency of 11 per cent ; peak efficiencies close to 12 per cent have been demonstrated. This technology will be transferred within three project phases into a state capable of fabricating prototype stand - alone power modules as well as prototype fassade modules with a minimum efficiency of 11 per cent. Phase I comprises the final definition of processes and materials for first demonstrator module. The second phase covers the fabrication of demonstrator modules according to the specifications defined in phase I. On the basis of an improved technology a second set of CIS demonstrator modules with a minimum efficiency of 11 per cent will be produced and tested during the last phase of this project. The work packages comprises manufacturing compatible barrier coatings for float glass substrates, high throughput coating and annealing steps as well as an interconnect and encapsulation technology that guarantees stable module performance. Expected Achievements and Exploitation: At the end of this program, prototype stand - alone power modules as well as prototype fassade modules with a minimum efficiency of 11 per cent will be provided. Owing to the technical competence and manufacturing capability gained by both companies during that project a closer analysis of the cost structure for further mass production of CIS power modules will be performed. On the basis of these results it is planned at Siemens Solar to start the pilot production of modules for the application in the PV - power market. With St. Gobain mostly interested in PV for fassade integration first product lines will also comprise that market segment.

Standardization of Ice Forces on Offshore Structures Design (STANDICE)

Das Projekt "Standardization of Ice Forces on Offshore Structures Design (STANDICE)" wird vom Umweltbundesamt gefördert und von Dr. J. Schwarz durchgeführt. Objective: During the past six years two RTD-projects have been performed by a consortium of seven European partners to investigate ice forces on marine structures. The aim of this work has been to establish new methods for ice load predictions. The work has been supported by the EC under the projects LOLEIF and STRICE. The data compiled by these projects are of great importance for the future development of offshore wind energy converters, OWECS, in the ice-covered seas of Europe. Because the ice forces on marine structures are internationally heavily disputed the present design codes for OWECS as well as for all marine structures in ice-infested waters are not been considered reliable. Therefore, the main objective of this project is to contribute to the development of an international standard for the design of marine structures such as OWECS against ice loads with special emphasis on European sub-arctic ice conditions.

CO2SINK - In-situ Labor zur Untersuchung der Speicherung von Kohlendioxid unter der Erde

Das Projekt "CO2SINK - In-situ Labor zur Untersuchung der Speicherung von Kohlendioxid unter der Erde" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum durchgeführt. Ketzin ist eine Stadt westlich von Berlin im Land Brandenburg. In ihrer Nähe wurde seit 1960 Erdgas aus Sibirien in unterirdischen Sandsteinschichten zwischengelagert. Diese Erdgasspeicherung wurde vor kurzem eingestellt. Hier soll ein Forschungs- und Entwicklungsprojekt eingerichtet werden, bei dem das Treibhausgas Kohlendioxid (CO2 ) im Untergrund gelagert werden soll. Das Projekt wird vom GeoForschungsZentrum Potsdam koordiniert und von der Europäischen Union mit 8.7 Millionen Euro gefördert. Das Projekt soll helfen, das wissenschaftliche Verständnis der geologischen Speicherung von CO2 weiter zu entwickeln und die im Untergrund ablaufenden Prozesse der CO2 Injektion praktisch zu erforschen. Zunächst werden geologisch-geophysikalisch-geochemische Voruntersuchungen des Standortes und des vorgesehenen Speicherhorizontes sowie eine umfassende Risikoabschätzung vorgenommen um sicherzustellen, dass die Speicherung auch gefahrlos durchgeführt werden kann. Die erforderlichen Bewilligungen des zuständigen Bergamtes, der örtlichen Gemeinde und das Einverständnis der betroffenen Anwohner müssen dazu eingeholt werden. Die künftige Nutzung des Geländes ist Teil eines behördlich bereits genehmigten Bebauungsplans, der auch andere Vorhaben zur Nutzung regenerativer Energie aus Wind, Sonne und Biomasse einschließt. Das CO2 SINK Projekt erlaubt die Weiterverwendung vorhandener Gasspeicher-Infrastrukturen. Geplant ist die unterirdische Injektion von jährlich mehreren 10,000 Tonnen an reinem CO2 für zunächst zwei bis drei Jahre. Das CO2 soll dabei vorwiegend aus regenerativen Biomasse-Energierohstoffen gewonnen werden. Dieses ermöglicht im Prinzip, CO2 aus der Atmosphäre zu entziehen und damit die Treibhausgaskonzentration zu verringern. Unterirdische Erdgasspeicher und geologische Speicher für CO2 in salinen Grundwasserleitern (Aquifere) haben zwei gemeinsame Merkmale: Sie bestehen aus Gestein mit großem Porenraum wie z.B. Sandstein, das von abdichtenden Tonschichten überdeckt ist. Im Untergrundspeicher Ketzin wurde das Erdgas in einer Sandsteinschicht zwischen 250 und 400 Meter Tiefe unter der Erde gelagert. Aus Erkundungsbohrungen und seismischen Messungen weiß man, dass es dort aber noch mindestens eine weitere gut geeignete Speicherschicht in größerer Tiefe gibt. Diese ist rund 80 Meter mächtig und liegt auf einer geologischen Kuppe, die sich bis ungefähr 600 Meter unter der Erdoberfläche aufwölbt. Die Sandsteinschicht fällt nach allen Seiten auf etwa 700 Meter ab und ist von abdichtenden Gips- und Tonschichten überlagert. Um den Untergrund und die bei der CO2 Speicherung darin ablaufenden Prozesse verstehen zu können, ist im Projekt CO2SINK eine umfassende Reihe von wissenschaftlichen Untersuchungen geplant. Usw.

Demonstration of a sustainable CHP concept using residues from olive oil production (OLIVEPOWER)

Das Projekt "Demonstration of a sustainable CHP concept using residues from olive oil production (OLIVEPOWER)" wird vom Umweltbundesamt gefördert und von New Energy Biomasse Hellas GmbH durchgeführt. Objective: The project focuses on the demonstration of an innovative and sustainable CHP concept using residues from olive oil production (olive wastes) as fuel. A first plant based on the new concept will be realised in Greece. The main objective of the project is to demonstrate a closed cycle concept able to reduce landfill problems and emissions and to promote the use of renewable electricity production in Southern Europe. The project will be based on an approach integrating the whole chain (fuel logistics and preparation, energy production, by-product utilisation). An optimised fuel logistic concept will guarantee for a secured fuel supply over the whole year. The fuel will not only be dewatered and dried but also a marketable by-product will be produced. By this means a better fuel quality can be achieved and solid wastes as well as waste- water can be omitted. The development and design of the combustion unit focuses on a technology tailored to the special characteristics of the olive waste.

Tools for Sustainabiltity Impact Assessment of the Forestry- Wood Chain

Das Projekt "Tools for Sustainabiltity Impact Assessment of the Forestry- Wood Chain" wird vom Umweltbundesamt gefördert und von Universität Hamburg, Department für Biologie, Zentrum Holzwirtschaft des Johann Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei durchgeführt. The objective of EFORWOOD is to develop a quantitative decision support tool for Sustainability Impact Assessment of the European Forestry-Wood Chain (FWC) and subsets thereof (e.g. regional), covering forestry, industrial manufacturing, consumption and recycling. The objective will be achieved by:a) defining economic, environmental and social sustainability indicators ,b) developing a tool for Sustainability Impact Assessment by integrating a set of models ,c) supplying the tool with real data, aggregated as needed and appropriate,d) testing the tool in a stepwise procedure allowing adjustments to be made according to the experiences gained,e) applying the tool to assess the sustainability of the present European FWC (and subsets thereof) as well the impacts of potential major changes based on scenarios,f) making the adapted versions of the tool available to stakeholder groupings (industrial, political and others).The multi-functionality of the FWC is taken into account by using indicators to assess the sustainability of production processes and by including in the analysis the various products and services of the FWC. Wide stakeholder consultations will be used throughout the process to reach the objective. EFORWOOD will contribute to EU policies connected to the FWC, especially to the Sustainable Development Strategy. It will provide policy-makers, forest owners, the related industries and other stakeholders with a tool to strengthen the forest-based sector's contribution towards a more sustainable Europe, thereby also improving its competitiveness. To achieve this, EFORWOOD gathers a consortium of highest-class experts, including the most representative forest-based sector confederations.EFORWOOD addresses with a high degree of relevance the objectives set out in the 3rd call for proposals addressing Thematic Sub-priority 1.1.6.3 Global Change and Ecosystems, topic V.2.1. Forestry/wood chain for Sustainable Development. Prime Contractor: Stiftelsen Skogsbrukets Forskningsinstitut, Skogforsk; Uppsala; Sweden.

Nutzung der Abwaerme von Fahrzeugmotoren

Das Projekt "Nutzung der Abwaerme von Fahrzeugmotoren" wird vom Umweltbundesamt gefördert und von Mercedes-Benz Group AG durchgeführt. General Information: Between 60 per cent and 80 per cent of the applied fuel energy in heat engines is lost to the ambient environment as waste exhaust heat. Suitable equipment could turn some of that heat into useful mechanical energy, e.g. an exhaust gas turbine, a Stirling engine or a steam-driven system. Daimler-Benz AG carried out a feasibility study of the possible application of a diesel engine coupled with a rankine bottoming cycle. It is shown that a 38 t heavy-duty truck of 206 kw on a long haul (Rotterdam-Verona) can reduce its fuel consumption for the same output by 10.5 per cent (using the working fluid fluorinol-50). According to rough estimates this corresponds to approx. 90,000 t of diesel fuel per year on fuel savings in the federal republic of Germany (based on the figures for 1980). The payback time of this system is however too long under the present technical and economic conditions. The unrealistic limit case of the adiabatic diesel engine (no heat exchange between gas and wall) with bottoming cycle was also included in the calculations as the theoretical limit and the results indicated fuel savings of 25 per cent. If we consider a trend to higher energy prices, the insulated diesel engine (reduced heat exchange between gas and wall) operating at higher temperatures and efficiency together with a rankine bottoming cycle may have a chance in future even from an economic point of view.

1 2 3 4 525 26 27