Der INSPIRE Dienst Verteilung der Vogel-Arten (S) in Deutschland - Verbreitung stellt bundesweite Verbreitungsdatensätze gemäß den Vorgaben der INSPIRE Richtline Annex III Thema bereit. Die Verbreitungsdaten wurden vom Dachverband Deutscher Avifaunisten (DDA) zusammengestellt und mit den Vogelschutzwarten und Fachverbänden der Bundesländer abgestimmt. Die Verbreitungsdaten wurden im nationalen Vogelschutzbericht 2019 nach Art. 12 der Vogelschutzrichtlinie der EU übermittelt. Für die Verbreitungsdaten wurden Daten des Atlas deutscher Brutvogelarten (Gedeon et al. 2014), Angaben aus dem Internetportal www.ornitho.de sowie einzelne ergänzende Daten aus einzelnen Bundesländern zusammengeführt. Die Angaben sind methodisch unterschiedlich erhoben worden. Die Erhebungsdaten stammen aus dem Zeitraum 2005 – 2016. Der Dienst enthält keine Informationen zu sensiblen Arten.
Das Projekt "How is the evolution of stratospheric ozone affected by climate change, and how strong is the feedback? (SHARP-OFC)" wird vom Umweltbundesamt gefördert und von Universität Bremen, Institut für Umweltphysik durchgeführt. One major goal of this project is to analyse updated observational trace gas data together with stateof- the art models (CTMs and CCMs) in order to obtain a better understanding of the interaction between ozone and climate change and the underlying dynamical and chemical processes. The extended satellite, balloon and aircraft observations combined with improved model calculations (CTM and CCM) are used to further reduce the uncertainties in the bromine budget, in particular the contribution from VSLS (very short lived substances) and to further elucidate on the role of iodine in the stratosphere. Furthermore detailed studies on the long-term evolution (trends and variability) of observed stratospheric trace gases with foci on profiles of O3, NO2 and aerosols retrieved from SCIAMACHY are proposed. Future evolution of stratospheric ozone will be investigated using updated EMAC CCM model runs, some of them in combination with an interactive atmosphere-ocean feedback. In addition to issues on the climate feedback on future ozone, particular emphasis will be given to the increasing role of N2O and GHG emissions.
Das Projekt "Forest management and habitat structure - influences on the network of song birds, vectors and blood parasites" wird vom Umweltbundesamt gefördert und von Universität Freiburg, Forstzoologisches Institut, Professur für Wildtierökologie und Wildtiermanagement durchgeführt. Forest structure is altered by humans for long times (Bramanti et al. 2009). The long lasting modification of forests pursuant to human demands modified the living conditions for birds as well as for many other animals. This included changes in resource availability (e.g., food, foraging, nesting sites) and changes of interspecific interactions, e.g., parasitism and predation (Knoke et al. 2009; Ellis et al. 2012). Also species compositions and the survivability of populations and even species are affected. The loss of foraging sites and suitable places for reproduction, the limitation of mobility due to fragmented habitats and the disturbances by humans itself may lead to more stressed individuals and less optimal living conditions. In certain cases species are not able to deal with the modified requirements and their populations will shrink and even vanish. Depending on the intensity of management and the remaining forest structure, biodiversity is more or less endangered. Especially in systems of two or more strongly connected taxa changing conditions that affect at least one part may subsequently affect the other, too. One system of interspecific communities that recently attracted the attention of biologists includes birds, blood parasites (haemosporidians) and their transmitting vectors. For instance, avian malaria (Plasmodium relictum) represents the reason for extreme declines in the avifauna of Hawaii since the introduction of respective vectors (e.g. Culicidae) during the 20th century (van Riper et al. 1986, Woodworth et al. 2005). With the current knowledge of this topic we are not able to predict if such incidences could also occur in Germany. All in all, different management strategies and intensity of forest management may influence the network of birds, vectors and blood parasites and change biodiversity. To elucidate this ecological complex, and to understand the interactions of the triad of songbirds as vertebrate hosts, dipteran vectors and haemosporidians within changing local conditions, I intend to collect data on the three taxa in differently managed forest areas, the given forest structure and the climatic conditions. I will try to explain the role of abiotic factors on infection dynamics, in detail the role of forest management intensity. Data acquisition takes place at three spatially divided locations: inside the Biodiversity Exploratory Schwäbische Alb, at the Mooswald in Freiburg, and inside the Schwarzwald.
Das Projekt "Siberian Earth System Science Cluster (SIB-ESS-C)" wird vom Umweltbundesamt gefördert und von Universität Jena, Institut für Geographie, Abteilung Geoinformatik und Fernerkundung durchgeführt. The Siberian Earth System Science Cluster is a recently started project of the Department of Earth Observation at the Friedrich-Schiller University Jena (Germany) to generate and disseminate information products of central Siberia along with advanced analysis services in support of Earth System Science. Products provided cover central Siberia and have been created by a consortium of research institutions that joined forces in the FP 5 EU project SIBERIA-II (Multi-Sensor Concepts for Greenhouse Gas Accounting of Northern Eurasia, EVG2-2001-00008). The study region comprises a number of ecosystems in northern Eurasia ranging from the tundra, the boreal and temperate forests, mountainous areas and grasslands. The region is believed to play a critical role in global climate change and has been also defined as one of IGBP's Boreal transects representing a strong climate change hot spot in Northern Eurasia.
Das Projekt "Energy Storage for Direct Steam Solar Power Plants (DISTOR)" wird vom Umweltbundesamt gefördert und von Deutsches Zentrum für Luft- und Raumfahrt e.V., Institut für Technische Thermodynamik durchgeführt. Objective: Solar thermal power plants represent today's most economic systems to generate electricity from solar insulation in them-range in regions like the Mediterranean area. By demonstrating the feasibility of direct steam generation in the absorber pipes European industry and research institutions have gained a leading position in this technology area. A key element foray successful market penetration is the availability of storage systems to reduce the dependence on the course of solarinsolation. The most important benefits result from -reduced internal costs due to increased efficiency and extended utilisation of the power block-facilitating the integration of a solar power plant into an electrical grid-adoption of electricity production to the demand thus increasing revenues Efficient storage systems for steam power plants demand transfer of energy during the charging/discharging process at constant temperatures. The DISTOR project focuses on the development of systems using phase change materials (PCM) as storage media. In order to accelerate the development, the DISTOR project is based on parallel research on three different storage concepts. These concepts include innovative aspects like encapsulated PCM, evaporation heat transfer and new design concepts. This parallel approach takes advantage of synergy effects and will enable the identification of the most promising storage concept. A consortium covering the various aspects of design and manufacturing has been formed from manufacturers, engineering companies and research institutions experienced in solar thermal power plants and PCM technology. The project will provide advanced storage material based on PCM for the temperature range of 200-300 C adapted to the needs of Direct Steam generation thus expanding Europe's strong position in solar thermal power plants.
Das Projekt "Phase 1: Earth and Space Based Power Generation Systems" wird vom Umweltbundesamt gefördert und von Deutsches Zentrum für Luft- und Raumfahrt, Institut für Technische Thermodynamik, Abteilung Systemanalyse und Technikbewertung durchgeführt. This study has to be understood in the frame of the global Energy Policy. A great part of world energy production is currently based on non-renewable sources: oil, gas and coal. Global warming and restricted fossil energy sources force a strong demand for another climate compatible energy supply. Therefore, fossil energy sources will nearly disappear until the end of this century. The question is to find a viable replacement. By using viable' it is meant a low-cost and environmental friendly energy. In other words, the question is to find an alternative to nuclear energy among all proposed but still not mature renewable energies. One of the solutions proposed is solar energy. Yet, two major concerns slow down its development as an alternative: first, it lacks of technological maturity and secondly it suffers from alternating supply during days and nights, winters and summers. The idea proposed by Glaser in the sixties to bypass this inconvenient is to take the energy at the source (or at least, as near as possible): in other words, to put a solar station on orbit that captures the energy without problems of climatic conditions and to redirect it through a beam to the ground. That is the concept of Solar Power Satellites. Its principal feasibility was shown by DOE / NASA in 1970 years studies (5 GW SPS in GEO). Project objectives: This phase 1 study activity is to be seen as the initial step of a series of investigations on the viability of power generation in space facing towards an European strategy on renewable, CO2 free energy generation, including a technology development roadmap pacing the way to establish in a step-wise approach on energy generation capabilities in space. The entire activity has to be embedded in an international network of competent, experienced partners. As part of this, an interrelationship to and incorporation of activities targeting the aims of the EU 6th FP ESSPERANS should be maintained. In particular, the activities related to following objectives are described: The generation of scientifically sound and objective results on terrestrial CO2 emission free power generation solutions in comparison with state-of-the-art space based solar power solutions The detailed comparison and trades between the terrestrial and the space based solutions in terms of cost, reliability and risk The identification of possible synergies between ground and space based power generation solutions The assessment on terrestrial energy storage needs by combining ground based with space based energy generation solutions The investigation of the viability of concepts in terms of energy balance of the complete systems and payback times.
Das Projekt "Effect of plant diversity on ecosystem functions in grassland: the role of roots" wird vom Umweltbundesamt gefördert und von Universität Berlin (Humboldt-Univ.), Landwirtschaftlich-Gärtnerische Fakultät, Institut für Pflanzenbauwissenschaften, Fachgebiet Pflanzenernährung durchgeführt. Human activities have led to strong reduction in plant diversity. There is an intensive debate on the consequences of diversity loss on ecosystem functions such as productivity, and cycling of carbon and mineral nutrients, as well as on the plant traits responsible for these ecosystem functions. In this subproject it is tried to assess the effects of plant diversity in experimentally established grassland plots on (a) biomass and nutrient accumulation in roots, (b) acquisition of soil resources by living roots and (c) release of organic carbon and nutrients into the soil by decaying roots. The experimental design allows to differentiate between effects of plant species number per se, and effects of functional attributes associated with specific plant groups on root characteristics. It is expected that the results will improve our knowledge about the processes involved in diversity effects on ecosystem functions, and finally may help to develop recommendations of agricultural measures for sustainable grassland management
Das Projekt "Cirrus-LEWIZ : Cirrus clouds in polewared breaking Rossby waves" wird vom Umweltbundesamt gefördert und von Leibniz-Institut für Atmosphärenphysik e.V. an der Universität Rostock durchgeführt. Aim: - observe cirrus clouds in poleward breaking Rossby waves with LIDAR, - characterised their pathway in the given synoptic situation using analysis data and backward trajectories, - develop a conceptual model for the transport of water vapor in poleward breaking Rossby waves. Activities: - Launching of several field campaigns such as Cirrus-K1, Cirrus-K2 and Cirrus-K3 including radiosonde and LIDAR observations, - Review of Historical LIDAR data. Results: Poleward Rossby wave breaking events have been often observed over the North Atlantic - European region in the upper troposphere in winter time. During a measuring campaign from 13 to 15 February 2006 a special Rossby wave breaking event was investigated with radiosondes and LIDAR observations. The connected horizontal and vertical transport of water vapour in the upper troposphere / lower stratosphere was analysed with backward trajectories. We found that during this poleward Rossby wave breaking event an air mass body has ben formed over central Europe with an extreme low temperature an a very high specific humidity in the tropopause region. The formation is characterised by a strong adiabatic nort-eastward and upward transport of water vapour on the western flank of a stagnation point over Mecklenburg (North German Lowlands). The radiosonde soundings show layers of supersaturated water vapour with respect to ice, but isolated patches of very high cirrus clouds have been clearly identified by LIDAR measurements over Kühlungsborn (54 Grad CN, 11 Grad CE). Based on formed LIDAR measurements from 1997 to 2002 and similar analysis we established the hypothesis that poleward Rossby wave breaking events are connected with north-eastward and upward tropospheric transport of water vapour, forming of supersaturated water vapour over ice and formation of very high cirrus clouds.
Das Projekt "Sub project:The effect of iron(III)-sulfide interactions on electron transfer processes in anoxic aquifers" wird vom Umweltbundesamt gefördert und von Universität Bayreuth, Fachgruppe Geowissenschaften, Bayreuther Zentrum für Ökologie und Umweltforschung (BayCEER), Lehrstuhl für Hydrologie durchgeführt. Strong evidence exists that the oxidation of H2S by ferric (oxyhydr)oxides occurs also in ground water systems and may exert a major role for the sulphur and iron cycle and in particular for the electron and carbon flow in aquifers. To date, no systematic study has been performed that allows to quantitatively assess its significance in such systems. This project aims to fill this gap of knowledge. The extent of the reaction depends on mineral reactivity, which we hypothesize can be expressed in terms of a generalized kinetic model for the full pH range of environmental relvance. This model accounts for the adsorption of H2S at lower pH values and of HS- at circumneutral pH to the neutral ferric (oxyhydr)oxide surface to form the reactive species FeSH. Variations in reactivity may be caused by intrinsic factors such as surface acidity of the iron mineral and solution composition, such as ionic strength and competition with other ions. The overall goals of this project therefore are to demonstrate the validity of this approach in order to quantify the kinetics for abiotic anaerobic H2S oxidation by ferric (oxyhydr)oxides, and to elucidate the role of this process as a precursor reaction for further microbial transformation of sulphur species in the aquifer.
Das Projekt "How is the stratosphere-troposphere coupling affected by climate change, and how strong is the climate feedback? (SHARP-STC)" wird vom Umweltbundesamt gefördert und von Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Institut für Physik der Atmosphäre, Abteilung Dynamik der mittleren Atmosphäre durchgeführt. The focus of this project is to determine the role of the interaction between the stratosphere and troposphere in a changing climate, in particular to assess the impact of a changing stratosphere on the troposphere- surface system. Observations and model studies have shown that the troposphere and stratosphere influence each other on different time scales, but the mechanisms responsible are not well understood. Questions that will be addressed also in Phase II of this project are if the importance of the coupling between the stratosphere and the troposphere will change in a changing climate and what the consequences will be for surface climate and weather. Transient simulations of the past and future as well as complementary sensitivity simulations with state-of-the-art Chemistry-Climate models (CCMs) will be performed and analysed to study how well current models are able to reproduce the observed coupling, to understand the responsible mechanisms, and to predict its future evolution. New aspects in Phase II are the extension of our studies to the effects of radiative and chemical coupling processes on the troposphere-surface system. The relevance of additional climate feedback processes associated with ocean coupling will be addressed by applying a CCM with an interactive ocean model. The role of the representation of stratospheric processes for stratosphere-troposphere coupling will be studied in simulations with an Earth System Model (ESM) with different spatial resolutions.
Origin | Count |
---|---|
Bund | 256 |
Type | Count |
---|---|
Förderprogramm | 255 |
unbekannt | 1 |
License | Count |
---|---|
open | 256 |
Language | Count |
---|---|
Deutsch | 256 |
Englisch | 247 |
Resource type | Count |
---|---|
Keine | 200 |
Webdienst | 1 |
Webseite | 56 |
Topic | Count |
---|---|
Boden | 236 |
Lebewesen & Lebensräume | 246 |
Luft | 208 |
Mensch & Umwelt | 256 |
Wasser | 218 |
Weitere | 256 |