API src

Found 357 results.

IPCC 4AR: Support for following the work of the IPCC related to the fourth assessment report

Das Projekt "IPCC 4AR: Support for following the work of the IPCC related to the fourth assessment report" wird vom Umweltbundesamt gefördert und von Potsdam-Institut für Klimafolgenforschung e.V. durchgeführt.

Clean Sky Technology Eco Design (Clean Sky ECO)

Das Projekt "Clean Sky Technology Eco Design (Clean Sky ECO)" wird vom Umweltbundesamt gefördert und von Airbus Helicopters Deutschland GmbH durchgeführt. The Eco-Design ITD (ED-ITD) gathers and structures from one side activities concerned specifically with development of new material and process technologies and demonstration on airframe and rotorcraft related parts stressing the ecolonomic aspects of such new technologies; from the other side, activities related to the All Electrical Aircraft concept related to small aircraft. ED-ITD is directly focused on the last ACARE goal: 'To make substantial progress in reducing the environmental impact of the manufacture, maintenance and disposal of aircraft and related products'. Reduction of environmental impacts during out of operation phases of the aircraft lifecycle can be estimated to around 20 % reduction of the total amount of the CO2 emitted by all the processes (direct emissions and indirect emissions i.e. produced when producing the energy) and 15 % of the total amount of the energy used by all the processes. In addition, expected benefit brought by the All Electric Aircraft concept to be highlighted through the conceptual aircraft defined in the vehicle ITDs is estimated to around 2% fuel consumption reduction due to mass benefits and better energy management. The status of the global fleet in the year 2000 constitutes the baseline against which achievements will be assessed. Progress toward these goals will result not only from ED internal activities but also from the collaboration with the relevant cross-cutting activities in GRA , GRC, SFWA (business jet platform) and SGO (electrical systems).

Water and global Change (WATCH)

Das Projekt "Water and global Change (WATCH)" wird vom Umweltbundesamt gefördert und von Potsdam-Institut für Klimafolgenforschung e.V. durchgeführt. Der globale Wasserkreislauf ist ein integraler Teil des Erdsystems. Er spielt eine zentrale Rolle in der globalen atmosphärischen Zirkulation, kontrolliert den globalen Energiekreislauf (mittels der latenten Wärme) und hat einen starken Einfluss auf die Kreisläufe von Kohlenstoff, Nährstoffen und Sedimenten. Global gesehen ist das Angebot an Frischwasser bei weitem größer als die menschlichen Bedürfnisse. Allerdings ist davon auszugehen, dass gegen Ende des 21. Jahrhunderts diese Bedürfnisse die gleiche Größenordnung erreichen werden wie das gesamte verfügbare Wasser. Für diverse Regionen jedoch übersteigt der Wasserbedarf (u.a. für die Landwirtschaft sowie die Nutzung in der Industrie und in den Haushalten) schon heute das regionale Angebot. Ansteigende CO2-Konzentrationen und Temperaturen führen zu einer Intensivierung des globalen Wasserkreislaufs und somit zu einem generellen Anstieg von Niederschlag, Abfluss und Verdunstung. Obwohl die Vorhersagen von zukünftigen Niederschlagsänderungen relativ unsicher sind, gibt es deutliche Hinweise, dass einige Regionen, wie z.B. der Mittelmeerraum, mit einer Abnahme des Niederschlags zu rechnen haben, während in einigen äquatornahen Regionen, wie z.B. Indien und der Sahelzone, der Niederschlag zunehmen wird. Hinzu kommt, dass sich auch jahreszeitliche Verläufe ändern könnten, die neue und manchmal auch unerwartete Probleme und Schäden verursachen können. Eine Intensivierung des Wasserkreislaufs bedeutet wahrscheinlich auch einen Anstieg in dessen Extremen, d.h. vor allem Überschwemmungen und Dürren. Es gibt Vermutungen, dass sich auch die interannuale Variabilität erhöhen wird und zwar einhergehend mit einer Intensivierung der El Nino und NAO-Zyklen, was zu mehr Dürren und großskaligen Hochwassersituationen führen würde. Diese Zyklen sind globale Phänomene, die diverse Regionen gleichzeitig beeinflussen, wenngleich dies oft auf verschiedene Art und Weise passiert.

D 6.1: Improving fruit set and quality standards of mango in the mountainous area of Vietnam

Das Projekt "D 6.1: Improving fruit set and quality standards of mango in the mountainous area of Vietnam" wird vom Umweltbundesamt gefördert und von Universität Hohenheim, Institut für Kulturpflanzenwissenschaften, Fachgebiet Ertragsphysiologie der Sonderkulturen (340f) durchgeführt. A major problem in mango production in Northern Vietnam is a premature fruit drop. However, the underlying plant processes in response to environmental and/or crop management factors are not understood. There is a general belief that this phenomenon is caused by different combinations of stressing factors which may vary between different regions and sites. In the mountainous area of northern Vietnam (Son La Province), fruit drop in mango may be caused by relatively hot, dry prevailing winds which typically occur in February/March. Consequently, it has to be determined which plant process responds sensitively to specific environmental conditions and subsequently causes, through its alteration, premature fruit drop. The identification of the physiological basis of premature fruit drop not only is of scientific interest but also of commercial significance, allowing the development of effective, fruit drop reducing crop management strategies and thus ensuring a economically sustainable cultivation of mango in this region. The research project has two main parts; environmental crop physiology and fruit quality. The environmental crop physiology part investigates whether premature fruit drop is caused by high temperature/vapour pressure deficit (VPD) conditions and related to: 1. temperature dependence of pollen tube growth and flower quality; 2. altered carbon fixation and carbon partitioning between sources (leaves) and sinks (fruit), thus possible limitations of carbon supply to developing mango fruit; 3. altered basipetal auxin export from fruit and fruit ethylene concentration. The fruit quality part will primarily carry out sensory fruit analyses and establish harvest quality criteria with the aim to improve the economic returns and thereby the economic situation of the fruit growers in the long-term.

The role of turgor in rain-cracking of sweet cherry fruit

Das Projekt "The role of turgor in rain-cracking of sweet cherry fruit" wird vom Umweltbundesamt gefördert und von Leibniz Universität Hannover, Institut für Biologische Produktionssysteme, Fachgebiet Obstbau durchgeführt. Rain-cracking limits the production of many soft and fleshy fruit including sweet cherries world wide. Cracking is thought to result from increased water uptake through surface and pedicel. Water uptake increases fruit volume, and hence, turgor of cells (Pcell) and the pressure inside the fruit (Pfruit) and subjects the skin to tangential stress and hence, strain. When the strain exceeds the limits of extensibility the fruit cracks. This hypothesis is referred to as the Pfruit driven strain cracking. Based on this hypothesis cracking is related to two independent groups of factors: (1) water transport characteristics and (2) the intrinsic cracking susceptibility of the fruit defined as the amount of cracking per unit water uptake. The intrinsic cracking susceptibility thus reflects the mechanical constitution of the fruit. Most studies focussed on water transport through the fruit surface (factors 1), but only little information is available on the mechanical constitution (i.e., Pfruit and Pcell, tensile properties such as fracture strain, fracture pressure and modulus of elasticity of the exocarp; factors 2). The few published estimates of Pfruit in sweet cherry are all obtained indirectly (calculated from fruit water potential and osmotic potentials of juice extracts) and unrealistically high. They exceed those measured by pressure probe techniques in mature grape berry by several orders of magnitude. The objective of the proposed project is to test the hypothesis of the Pfruit driven strain cracking. Initially we will focus on establishing systems of widely differing intrinsic cracking susceptibility by varying species (sweet and sour cherry, Ribes and Vaccinium berries, plum, tomato), genotype (within sweet cherry), stage of development and temperature. These systems will then be used for testing the hypothesis of Pfruit driven strain cracking. We will quantify Pfruit und Pcell by pressure probe techniques and compression tests and the mechanical properties of the exocarp using biaxial tensile tests. When the presence of high Pfruit and Pcell is confirmed by direct measurements, subsequent studies will focus on the mode of failure of the exocarp (fracture along vs. across cell walls) and the relationship between failure thresholds and morphometric characteristics of the exocarp. However, when Pfruit und Pcell are low, the hypothesis of Pfruit driven strain cracking must be rejected and the mechanistic basis for low pressures (presence of apoplastic solutes) clarified on a temporal (in the course of development) and a spatial scale (exocarp vs. mesocarp). We focus on sweet cherry, because detailed information on this species and experience in extending the short harvest period is available. Where appropriate, other cracking susceptible species (sour cherry, plum, Vaccinium, Ribes, tomato) will be included to further extend the experimental period and to maximize the range in intrinsic cracking susceptibility.

Tools for Sustainabiltity Impact Assessment of the Forestry- Wood Chain

Das Projekt "Tools for Sustainabiltity Impact Assessment of the Forestry- Wood Chain" wird vom Umweltbundesamt gefördert und von Universität Hamburg, Department für Biologie, Zentrum Holzwirtschaft des Johann Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei durchgeführt. The objective of EFORWOOD is to develop a quantitative decision support tool for Sustainability Impact Assessment of the European Forestry-Wood Chain (FWC) and subsets thereof (e.g. regional), covering forestry, industrial manufacturing, consumption and recycling. The objective will be achieved by:a) defining economic, environmental and social sustainability indicators ,b) developing a tool for Sustainability Impact Assessment by integrating a set of models ,c) supplying the tool with real data, aggregated as needed and appropriate,d) testing the tool in a stepwise procedure allowing adjustments to be made according to the experiences gained,e) applying the tool to assess the sustainability of the present European FWC (and subsets thereof) as well the impacts of potential major changes based on scenarios,f) making the adapted versions of the tool available to stakeholder groupings (industrial, political and others).The multi-functionality of the FWC is taken into account by using indicators to assess the sustainability of production processes and by including in the analysis the various products and services of the FWC. Wide stakeholder consultations will be used throughout the process to reach the objective. EFORWOOD will contribute to EU policies connected to the FWC, especially to the Sustainable Development Strategy. It will provide policy-makers, forest owners, the related industries and other stakeholders with a tool to strengthen the forest-based sector's contribution towards a more sustainable Europe, thereby also improving its competitiveness. To achieve this, EFORWOOD gathers a consortium of highest-class experts, including the most representative forest-based sector confederations.EFORWOOD addresses with a high degree of relevance the objectives set out in the 3rd call for proposals addressing Thematic Sub-priority 1.1.6.3 Global Change and Ecosystems, topic V.2.1. Forestry/wood chain for Sustainable Development. Prime Contractor: Stiftelsen Skogsbrukets Forskningsinstitut, Skogforsk; Uppsala; Sweden.

Discussion paper on issues related to the Nuclear Energy Option for Zimbabwe

Das Projekt "Discussion paper on issues related to the Nuclear Energy Option for Zimbabwe" wird vom Umweltbundesamt gefördert und von Öko-Institut. Institut für angewandte Ökologie e.V. durchgeführt.

Soil N dynamics as affected by different land use in Western and Southern China

Das Projekt "Soil N dynamics as affected by different land use in Western and Southern China" wird vom Umweltbundesamt gefördert und von Technische Universität Dresden, Institut für Bodenkunde und Standortslehre durchgeführt. The aim of the research project is to quantify the stocks and turnover of soil nitrogen in Western and Southern China as dependent from soil structure and land use. Key soil characteristics are determined at representative sites with regional specific land use and degradation status. The investigations will follow a land use gradient of natural forests, arable and pasture soils, the latter ones considering different degradation and rehabilitation status. The actual and potential soil nitrogen turnover will be horizon-wise quantified and related to soil structure and land use impacts. Beside mineral nitrogen, also preliminary organic N compounds using physical and chemical extraction will be detected. Parameters for the investigations are, beside total C and N stocks and distribution, gross and net N mineralization, nitrification, microbial biomass C and N and microbial respiration and indicators for soil N turnover like active N pools and light fraction of organic matter. In the last phase the structure of the soil microbial microbial community will be determined and related to indicators of nitrogen status and efficiency. The research activities will be carried out in close co-operation with the Institute for Soil and Water Conservation/ Yangling University at loess soils and the Nanjing Institute for Soil Science/ Chinese Academy for Science in Nanjing at red soil sites.

Teilprojekt A

Das Projekt "Teilprojekt A" wird vom Umweltbundesamt gefördert und von Universität Gießen, Institut für Angewandte Mikrobiologie, Professur für Allgemeine und Bodenmikrobiologie durchgeführt. Wheat and barley production will be optimized under low energy input in organic farming at two experimental field stations of University Giessen and University Hohenheim. Effects of root densities (row distance), two nutrients fertilization regimes and seed inoculation of the plant growth promoting bacterium Hartmannibacter diazotrophicus will be analyzed in wheat as an important winter crop and in the summer crop barley. Quality parameters of produced grains differ for the two crops. For baking wheat protein quality and quantity is important while for malting barley high starch content is required. These parameter of the grains will be related to their root system and rhizosphere microbiome under the different treatments. The seed, root and rhizosphere bacterial and fungal microbiome will be analysed and it is expected to be specific for the two crop plants and less affected by the two soil types and locations. We aim to analyze the implication of root competition, nutrient limitation and seed inoculation on the microbiome under field conditions. Root competition will be analyzed using two different row distances under a low and optimal nitrogen fertilization regime. The plant root system might further profit from the inoculum and benefits would be derived from a more efficient root system that could capture N from fertiliser-soil sources more effectively, as well as more efficient N cycling might occur. Root architecture and biomass will be linked to microbiome analysis and grain quality and quantity. Before seeding and after harvest soil samples are analyzed for parameter estimating the sustainability of crop production. Such parameter include bacterial and fungal diversity, microbial respiration rate, soil N concentrations, protease and nitrification activity, phosphate concentration and phosphatase activity. Our results will be used for identification of optimal parameter for sustainable wheat and barley production and will lead to a bioeconomic evaluation.

SP 1.4 Evaluation of nutrient and pollutant cycles of livestock production systems and manure management systems in the North China Plain

Das Projekt "SP 1.4 Evaluation of nutrient and pollutant cycles of livestock production systems and manure management systems in the North China Plain" wird vom Umweltbundesamt gefördert und von Universität Hohenheim, Institut für Agrartechnik, Fachgebiet Verfahrenstechnik der Tierhaltungssysteme (440b) durchgeführt. The increasing specialization and intensification of the agricultural food production in the North China Plain is leading to restrictions in nutrients and production cycles at farm and regional levels. As a result, livestock production in the North China Plain is entailing serious environmental negative impacts related to manure surpluses and recycling of nutrients, mainly leading to problems associated with water, soil and air pollution. On the other side higher nutrient demands in the local crops is leading to the purchase of chemical or mineral fertilizers when local or on-farm nutrients are not available. Therefore, the efficient use of organic fertilizers not only depends on their availability in the farms, but also on their nutritional composition. Likewise, soil nutrient requirements and plant physiological needs have to be taken into consideration. Indeed, the closer the nutrient cycles and the lower the environmental negative impacts and farm losses are, the greater the chances for a more sustainable resource use in the North China Plain. In the context of the IRTG, aspects of livestock farming in production systems in terms of widely closed nutrients cycles will be integrated. The material flows in different animal husbandry systems will be analysed and the environmental impacts dependent on livestock farming techniques, farms operability and their respective management will be investigated. The applicability and effectiveness of the technical and organizational measures for the reduction of material losses and, the environmental burdens caused by livestock and manure mismanagement in the North China Plain will be reviewed. The benefits and profits for the local cropping systems as result of the application of organic fertilizers originated from livestock farming will be both, ecologically and economically, evaluated as an alternative to replace the use of mineral fertilizers.

1 2 3 4 534 35 36