s/wasseruntersuichung/Wasseruntersuchung/gi
Landesmeßnetz zur Überwachung der Grundwasserbeschaffenheit im Hauptgrundwasserleiter gemäß der Kriterien der Wasserrahmenrichtlinie (WRRL).
Die Karte zeigt die mögliche Grundwasserversalzung im Maßstab 1:200 000. Süßwassererfüllte Grundwasserleiter sind in Niedersachsen nur bis zu einer Tiefe von maximal 300 m anzutreffen. Ihr Vorkommen ist auf die Bereiche beschränkt, in denen ein ständiger Wasseraustausch durch versickerndes Niederschlagswasser erfolgt (Zone des aktiven Wasseraustausches). Darunter ist eine zunehmende Versalzung des Grundwassers zu beobachten (Zone des verzögerten Wasseraustausches). In größeren Tiefen schließt sich ein Bereich mit weitgehend stagnierendem Grundwasser an. Der enge Zusammenhang zwischen Süßwasservorkommen und aktivem Wasseraustausch macht die Grundwasserdynamik zu einem zentralen Kriterium bei der Bewertung der Nutzbarkeit der Grundwasserleiter sowie auch bei der Abgrenzung von Grundwasserkörpern. Die Tiefenlage der versalzten Wässer, dass heißt, der Tiefgang des aktiven Wasseraustausches, wird wesentlich durch die hydraulischen Eigenschaften der Gesteinsschichten und das Potenzial der durchflossenen Süßwasserkörper gesteuert. Sie variiert demzufolge sehr stark. In großflächigen Vorflutbereichen ( z.B. Elbe-, Weser-, und Allerniederung), in denen der hydrostatische Druck infolge des Übertrittes großer Grundwassermengen in die Vorfluter abrupt abgebaut wird, können großräumige Druckgefälle auftreten, die ein Aufdringen von tiefen versalzten Wässern bis in den oberflächennahen Grundwasserbereich bewirken ( Binnenländische Versalzung ). Die Versalzungsbereiche im Tiefengrundwasser sind oft an die in den älteren Untergrund eingeschnittenen quartären Schmelzwasserrinnen gebunden. Die Tiefenlage der Versalzung liegt dort in einem Niveau, in dem außerhalb der Rinnen keine Grundwasserleiter mehr ausgebildet sind. Im Binnenland sind ferner rund 400 km2 als Grundwasserversalzungsbereiche einzustufen, die durch Ablaugungsvorgänge an hoch liegenden Salzstöcken verursacht sind ( Salzstockablaugung, Subrosion, vgl. Salzstrukturen Norddeutschlands 1 : 500 000, © BGR, 2008). An der Nordseeküste ist als Folge des allgemeinen Meeresspiegelanstieges nach der letzten Eiszeit auf breiter Front Meerwasser in die binnenländischen Grundwasserleiter eingedrungen ( Küstenversalzung ), wobei das in ihnen befindliche Süßwasser verdrängt wurde. Betroffen von dieser Art der Grundwasserversalzung ist ein bis zu 20 km breiter, insgesamt 2500 km2 großer Küstenstreifen, der somit für die Grundwassernutzung weitgehend ausfällt. Nur auf den Küsteninseln haben sich unter den Dünengebieten durch versickernde Niederschläge Süßwasserlinsen gebildet, die in begrenztem Umfang eine Trinkwasserförderung erlauben. Insgesamt sind in Niedersachsen Gebiete mit einer Gesamtfläche von rd. 6500 km2 von Grundwasserversalzungen betroffen, die dort eine Grundwassernutzung erschweren oder unmöglich machen. Zur Abgrenzung der Gebiete mit versalztem Grundwasser wurden die Ergebnisse von Wasseranalysen, geoelektrischen Sondierungen und Aufschlussbohrungen mit geophysikalischen Bohrlochmessungen ausgewertet. Ein Wasser wird als versalzt bezeichnet, wenn sein Chloridgehalt 250 mg/l übersteigt, was in etwa der menschlichen Geschmacksgrenze entspricht. In der Karte wird im Lockergestein unterschieden, ob der gesamte Grundwasserkörper versalzt ist oder ob Salzwasser nur in einem Teil des Grundwassers angetroffen wurde. Im Festgestein werden nur oberflächennahe Versalzungen, auch im Bereich von Salzhalden, dargestellt.
Die Karte zeigt die mögliche Grundwasserversalzung im Maßstab 1:200 000. Süßwassererfüllte Grundwasserleiter sind in Niedersachsen nur bis zu einer Tiefe von maximal 300 m anzutreffen. Ihr Vorkommen ist auf die Bereiche beschränkt, in denen ein ständiger Wasseraustausch durch versickerndes Niederschlagswasser erfolgt (Zone des aktiven Wasseraustausches). Darunter ist eine zunehmende Versalzung des Grundwassers zu beobachten (Zone des verzögerten Wasseraustausches). In größeren Tiefen schließt sich ein Bereich mit weitgehend stagnierendem Grundwasser an. Der enge Zusammenhang zwischen Süßwasservorkommen und aktivem Wasseraustausch macht die Grundwasserdynamik zu einem zentralen Kriterium bei der Bewertung der Nutzbarkeit der Grundwasserleiter sowie auch bei der Abgrenzung von Grundwasserkörpern. Die Tiefenlage der versalzten Wässer, dass heißt, der Tiefgang des aktiven Wasseraustausches, wird wesentlich durch die hydraulischen Eigenschaften der Gesteinsschichten und das Potenzial der durchflossenen Süßwasserkörper gesteuert. Sie variiert demzufolge sehr stark. In großflächigen Vorflutbereichen ( z.B. Elbe-, Weser-, und Allerniederung), in denen der hydrostatische Druck infolge des Übertrittes großer Grundwassermengen in die Vorfluter abrupt abgebaut wird, können großräumige Druckgefälle auftreten, die ein Aufdringen von tiefen versalzten Wässern bis in den oberflächennahen Grundwasserbereich bewirken ( Binnenländische Versalzung ). Die Versalzungsbereiche im Tiefengrundwasser sind oft an die in den älteren Untergrund eingeschnittenen quartären Schmelzwasserrinnen gebunden. Die Tiefenlage der Versalzung liegt dort in einem Niveau, in dem außerhalb der Rinnen keine Grundwasserleiter mehr ausgebildet sind. Im Binnenland sind ferner rund 400 km2 als Grundwasserversalzungsbereiche einzustufen, die durch Ablaugungsvorgänge an hoch liegenden Salzstöcken verursacht sind ( Salzstockablaugung, Subrosion, vgl. Salzstrukturen Norddeutschlands 1 : 500 000, © BGR, 2008). An der Nordseeküste ist als Folge des allgemeinen Meeresspiegelanstieges nach der letzten Eiszeit auf breiter Front Meerwasser in die binnenländischen Grundwasserleiter eingedrungen ( Küstenversalzung ), wobei das in ihnen befindliche Süßwasser verdrängt wurde. Betroffen von dieser Art der Grundwasserversalzung ist ein bis zu 20 km breiter, insgesamt 2500 km2 großer Küstenstreifen, der somit für die Grundwassernutzung weitgehend ausfällt. Nur auf den Küsteninseln haben sich unter den Dünengebieten durch versickernde Niederschläge Süßwasserlinsen gebildet, die in begrenztem Umfang eine Trinkwasserförderung erlauben. Insgesamt sind in Niedersachsen Gebiete mit einer Gesamtfläche von rd. 6500 km2 von Grundwasserversalzungen betroffen, die dort eine Grundwassernutzung erschweren oder unmöglich machen. Zur Abgrenzung der Gebiete mit versalztem Grundwasser wurden die Ergebnisse von Wasseranalysen, geoelektrischen Sondierungen und Aufschlussbohrungen mit geophysikalischen Bohrlochmessungen ausgewertet. Ein Wasser wird als versalzt bezeichnet, wenn sein Chloridgehalt 250 mg/l übersteigt, was in etwa der menschlichen Geschmacksgrenze entspricht. In der Karte wird im Lockergestein unterschieden, ob der gesamte Grundwasserkörper versalzt ist oder ob Salzwasser nur in einem Teil des Grundwassers angetroffen wurde. Im Festgestein werden nur oberflächennahe Versalzungen, auch im Bereich von Salzhalden, dargestellt.
The interim report covers the status quo on the use of scrubbers (Exhaust Gas Cleaning Systems, EGCS) for sulphur reduction in seagoing ships. Based on a literature study, it includes technical aspects, a market analysis, legal framework and the status of research activities. The focus is on discharge water. Prior research studies demonstrated an acidic pH and the presence of several pollutants such as heavy metals, polycyclic aromatic hydrocarbons, oil residues and nitrate in relevant concentrations. Ecotoxicological analyses demonstrated toxicity effects and that the single-pollutant approach alone is not sufficient for the environmental risk assessment of EGCS discharge water. Despite the current regulation, concerns regarding the impacts on the marine environment due to these emissions remain. Considering that, present and future studies should provide valuable input to the process of appropriate regulation. Veröffentlicht in Texte | 83/2021.
The report is based on the results of a questionnaire on current and planned research and monitoring activities on waste in various environmental compartments, which was distributed to European countries via the Federal Environment Agency ( UBA ). It analyses current and planned research and monitoring activities as well as reduction strategies in relation to waste in water and soil. The report highlights the urgent need for comprehensive, standardised monitoring, intensive research and coordinated efforts to better understand and consequently more effectively mitigate the wide-ranging impacts of waste pollution. The annex to the report contains a list and summary of key reports from Member States. Veröffentlicht in Texte | 30/2024.
Umweltbundesamt (UBA) warnt vor schwer abbaubaren und mobilen Chemikalien Schwer abbaubare, mobile und teilweise toxische Chemikalien, sogenannte PMT/vPvM-Stoffe, können langfristig unsere Wasserressourcen gefährden. Deshalb fordert das Umweltbundesamt – im Einklang mit der europäischen Chemikalienverordnung REACH – die Emissionen solcher Stoffe in die Umwelt zu minimieren. Den dringenden Handlungsbedarf zeigen vier neue Studien des UBA, darunter eine zu Wasseranalysen in 13 Trinkwassereinzugsgebieten. Vor diesem Hintergrund veröffentlicht das UBA zudem eine Liste mit 259 solcher PMT/vPvM-Stoffe und ruft die chemische Industrie zum sofortigen Handeln auf. Bei PMT/vPvM-Stoffen handelt es sich um zugleich persistente (P), mobile (M) und teilweise toxische (T) Chemikalien. Im Fall von vPvM-Stoffen sogar um sehr persistente (vP) und sehr mobile (vM) Verbindungen. Die Verbindungen dieser Stoffgruppe teilen die gleichen Eigenschaften, können aber zu unterschiedlichen Zwecken genutzt werden: als Pestizide , Biozide, Arzneimittelwirkstoffe oder Industriechemikalien. Sie werden bei der Herstellung von Farb- und Klebstoffen oder als Korrosionsschutz für Metalle, etwa in Reinigungstabs für Geschirrspülmaschinen, verwendet. Sie sind äußerst stabil und bewegen sich mit dem Wasserkreislauf. Haben sie erst einmal unsere Wasserressourcen kontaminiert, können sie – wenn überhaupt – nur mit hohem Aufwand wieder entfernt werden. Das UBA hat in vier neuen Studien das Auftreten von PMT/vPvM-Stoffen in der Umwelt untersucht. Demnach kommen schwer abbaubare und mobile Chemikalien in der Umwelt deutlich häufiger vor, als bislang bekannt. Einige davon sind mobile Ewigkeitschemikalien aus der Gruppe der per- und polyfluorierten Alkylsubstanzen ( PFAS ) und viele können durch herkömmliche Methoden der Wasseraufbereitung wie Ozonung oder Aktivkohlefilter nicht entfernt werden. Forschungspartner des UBA haben bei 13 deutschen Trinkwasserversorgern 76 Proben aus Oberflächenwasser, Grundwasser und Uferfiltrat untersucht. In jeder Wasserprobe wurden sie fündig: Die Wissenschaftler*innen identifizierten zahlreiche PFAS – meist mobile Ewigkeitschemikalien –, aber auch nicht-fluorierte Stoffe wie 1-H Benzotriazol, 1,4-Dioxan und Melamin, bei denen sich den UBA-Fachleuten die Frage stellt, ob sie nicht auch mobile Ewigkeitschemikalien sind. Um das Risiko von PMT/vPvM-Stoffen für Mensch und Umwelt zu bewerten, sind nicht die lokal gemessenen Konzentrationen entscheidend. Problematisch sind vielmehr die extreme Langlebigkeit und die hohe Mobilität der Chemikalien. Wegen dieser besonderen Stoffeigenschaften könnten die Konzentrationen auf lange Sicht steigen und PMT/vPvM-Stoffe sich weit in der Umwelt ausbreiten. UBA-Präsident Dirk Messner sieht daher die chemische Industrie in der Pflicht die Emissionen dieser PMT/vPvM-Stoffe zu minimieren: „Der nachhaltige Schutz unserer Trinkwasserressourcen und der menschlichen Gesundheit müssen hier Vorrang haben. Denn sind die Trinkwasserressourcen erst einmal mit persistenten Chemikalien belastet, ist dies kaum oder nur noch mit immensem Aufwand und Kosten wieder zu beheben.“ Eine breit angelegte Literaturrecherche zeigt darüber hinaus, dass bereits heute über 600 Chemikalien in unseren Wasserressourcen detektiert wurden. Rund die Hälfte der nachgewiesenen Chemikalien fällt dabei unter die Vorschriften der europäischen Chemikalienverordnung REACH . Viele davon sind wiederum PMT/vPvM-Stoffe. Dr. Christiane Rohleder, Staatsekretärin im BMUV , sagt: „Ich bin dem UBA sehr dankbar für die hier geleistete Arbeit. Diese Ergebnisse sind ausgesprochen wichtig und zeigen, dass diese Klasse von Stoffen ein relevantes Thema für unsere Wasserressourcen darstellt. Ich appelliere deshalb an die Industrie, eigeninitiativ und vorsorglich die notwendigen Maßnahmen zu ergreifen, um weitere Einträge dieser Stoffe in die Umwelt soweit wie möglich zu vermeiden.“ Hier setzt die jetzt veröffentlichte neue UBA-Liste an, die 259 PMT/vPvM-Stoffe aus der REACH-Registrierungsdatenbank umfasst: Die Hersteller und nachgeschalteten Anwender dieser Stoffe können mit Hilfe der UBA-Liste nun prüfen, bei welchen ihrer Chemikalien es sich um PMT/vPvM-Stoffe handelt. Anwender sollten die neuen Gefahrenklassen PMT und vPvM künftig bei der Selbsteinstufung berücksichtigen. Um unsere Wasserressourcen und die aquatische Umwelt für zukünftige Generationen zu schützen, müssen sie die Emissionen dieser Chemikalien während ihres gesamten Lebenszyklus deutlich minimieren. Zwei der am häufigsten detektierten Kontaminanten – 1,4-Dioxan und Melamin – wurden auf Initiative des UBA in Europa bereits offiziell als besonders besorgniserregende Stoffe identifiziert.
Díaz, Cecilia; Wege, Franziska-Frederike; Tang, Cuong Q.; Crampton-Platt, Alexandra; Rüdel, Heinz; Eilebrecht, Elke; Koschorreck, Jan Scientific Report 10 (2020), 14352 The use of environmental DNA (eDNA) for monitoring aquatic macrofauna allows the non-invasive species determination and measurement of their DNA abundance and typically involves the analysis of eDNA captured from water samples. In this proof-of-concept study, we focused on the novel use of eDNA extracted from archived suspended particulate matter (SPM) for identifying fish species using metabarcoding, which benefits from the prospect of retrospective monitoring and also analysis of fish communities through time. We used archived SPM samples of the German Environmental Specimen Bank (ESB), which were collected using sedimentation traps from different riverine points in Germany. Environmental DNA was extracted from nine SPM samples differing in location, organic content, and porosity (among other factors) using four different methods for the isolation of high-quality DNA. Application of the PowerSoil DNA Isolation Kit with an overnight incubation in lysis buffer, resulted in DNA extraction with the highest purity and eDNA metabarcoding of these eDNA fragments was used to detect a total of 29 fish taxa among the analyzed samples. Here we demonstrated for the first time that SPM is a promising source of eDNA for metabarcoding analysis, which could provide valuable retrospective information (when using archived SPM) for fish monitoring, complementing the currently used approaches. doi: 10.1038/s41598-020-71238-w
technologyComment of platinum group metal mine operation, ore with high palladium content (RU): imageUrlTagReplace6250302f-4c86-4605-a56f-03197a7811f2 technologyComment of platinum group metal, extraction and refinery operations (ZA): The ores from the different ore bodies are processed in concentrators where a PGM concentrate is produced with a tailing by product. The PGM base metal concentrate product from the different concentrators processing the different ores are blended during the smelting phase to balance the sulphur content in the final matte product. Smelter operators also carry out toll smelting from third part concentrators. The smelter product is send to the Base metal refinery where the PGMs are separated from the Base Metals. Precious metal refinery is carried out on PGM concentrate from the Base metal refinery to split the PGMs into individual metal products. Water analyses measurements for Anglo Platinum obtained from literature (Slatter et.al, 2009). Mudd, G., 2010. Platinum group metals: a unique case study in the sustainability of mineral resources, in: The 4th International Platinum Conference, Platinum in Transition “Boom or Bust.” Water share between MC and EC from Mudd (2010). Mudd, G., 2010. Platinum group metals: a unique case study in the sustainability of mineral resources, in: The 4th International Platinum Conference, Platinum in Transition “Boom or Bust.” technologyComment of treatment of automobile catalyst (RoW): After collection and transportation to the intermediary dealer, the scrap is ground in a mill. The resulting material is fed to specialised refineries. The metallurgical step consists of an arc-furnace. Same refining process as in primary production assumed (selective precipitation) technologyComment of treatment of automobile catalyst (RER): The production process consists of three steps: Collection, Beneficiation and Refining. COLLECTION: Spoiled automotive catalysts are bought by specialised enterprises from different origins. Part of it originates from scrap dealer recycling end-of-life cars. Further more during the cars operating phase, defective catalysts are exchanged in garages. The third sources is the production waste, i. e. defective catalysts which do not reach market. In most cases, there are fix agreements between the different supplier and the intermediary trade. Although the trade with PGM containing scrap is risky. Motor car manufacturer built up their own internal recycling systems with their contractor garages and gained access to exchanged catalysts. Emissions: Emissions during collection are gases from transportation and dust from dismantling. Also in this step the combustion leads to emissions of SO2. No serious water emissions are reported. BENEFICIATION: The catalysts are dismantled and then sold to refining companies. Refineries too have long-term contracts with the intermediary trade. Emissions: Emissions during beneficiation are gases from transportation and dust from dismantling. Also in this step the combustion leads to emissions of SO2. No serious water emissions are reported. REFINING: The scrap first is shredded and then pyrometallurgicaly processed: The scrap is smelted in an electric arc furnace, and the ceramic wafer is slagged. The PGMs are concentrated in the collector metal, usually copper. Low-content PGM scrap is often smelted together with other non-ferrous metal matte. This is cheap, but effects a high loss in PGM. The collector matte from the furnace then is treated hydrometallurgically by re-precipitation. In this step usually production scrap from other industries (glass, chemical laboratories) is joined. The overall PGM-yield is 98 % for platinum and 85 % for rhodium. Emissions: Dust and metals are generally emitted from incinerators and furnaces. VOC can be emitted from solvent extraction processes, while organic compounds, namely dioxins, can be emitted from smelting stages resulting from the poor combustion of oil and plastic in the feed material. All these emissions are subject to abatement technologies and controlling. Effluents from refining contain considerable amounts of metals and organic substances. Waste: Solid residues from pyrometallurgical step are usually re-used in copper facilities, final residues generally comprise hydroxide filter cakes. References: Hagelücken C. (2001b) Die Märkte der Katalysatormetalle Platin, Palladium und Rhodium. In: Autoabgaskatalysatoren, Vol. 612. pp. 95-115. Expert Verlag, Renningen. Online-Version under: http://www.dmc-2.de/pmc_eng/Veroeffentlichungen_2/Die%20M%C3%A4rkte%20der%20Katalysatormetalle%20Pt%20Pd%20Rh.pdf.
technologyComment of cobalt production (GLO): Cobalt, as a co-product of nickel and copper production, is obtained using a wide range of technologies. The initial life cycle stage covers the mining of the ore through underground or open cast methods. The ore is further processed in beneficiation to produce a concentrate and/or raffinate solution. Metal selection and further concentration is initiated in primary extraction, which may involve calcining, smelting, high pressure leaching, and other processes. The final product is obtained through further refining, which may involve processes such as re-leaching, selective solvent / solution extraction, selective precipitation, electrowinning, and other treatments. Transport is reported separately and consists of only the internal movements of materials / intermediates, and not the movement of final product. Due to its intrinsic value, cobalt has a high recycling rate. However, much of this recycling takes place downstream through the recycling of alloy scrap into new alloy, or goes into the cobalt chemical sector as an intermediate requiring additional refinement. Secondary production, ie production from the recycling of cobalt-containing wastes, is considered in this study in so far as it occurs as part of the participating companies’ production. This was shown to be of very limited significance (less than 1% of cobalt inputs). The secondary materials used for producing cobalt are modelled as entering the system free of environmental burden. technologyComment of platinum group metal mine operation, ore with high palladium content (RU): imageUrlTagReplace6250302f-4c86-4605-a56f-03197a7811f2 technologyComment of platinum group metal, extraction and refinery operations (ZA): The ores from the different ore bodies are processed in concentrators where a PGM concentrate is produced with a tailing by product. The PGM base metal concentrate product from the different concentrators processing the different ores are blended during the smelting phase to balance the sulphur content in the final matte product. Smelter operators also carry out toll smelting from third part concentrators. The smelter product is send to the Base metal refinery where the PGMs are separated from the Base Metals. Precious metal refinery is carried out on PGM concentrate from the Base metal refinery to split the PGMs into individual metal products. Water analyses measurements for Anglo Platinum obtained from literature (Slatter et.al, 2009). Mudd, G., 2010. Platinum group metals: a unique case study in the sustainability of mineral resources, in: The 4th International Platinum Conference, Platinum in Transition “Boom or Bust.” Water share between MC and EC from Mudd (2010). Mudd, G., 2010. Platinum group metals: a unique case study in the sustainability of mineral resources, in: The 4th International Platinum Conference, Platinum in Transition “Boom or Bust.” technologyComment of processing of nickel-rich materials (GLO): Based on typical current technology. technologyComment of smelting and refining of nickel concentrate, 16% Ni (GLO): Extrapolated from a typical technology for smelting and refining of nickel ore. MINING: 95% of sulphidic nickel ores are mined underground in depths between 200m and 1800m, the ore is transferred to the beneficiation. Widening of the tunnels is mainly done by blasting. The overburden – material, which does not contain PGM-bearing ore – is deposed off-site and is partially refilled into the tunnels. Emissions: The major emissions are due to mineral born pollutants in the effluents. The underground mining operations generate roughly 80 % of the dust emissions from open pit operations, since the major dust sources do not take place underground. Rain percolate through overburden and accounts to metal emissions to groundwater. Waste: Overburden is deposed close to the mine. Acid rock drainage occurs over a long period of time. BENEFICIATION: After mining, the ore is first ground. In a next step it is subjected to gravity concentration to separate the metallic particles from the PGM-bearing minerals. After this first concentration step, flotation is carried out to remove the gangue from the sulphidic minerals. For neutralisation lime is added. In the flotation several organic chemicals are used as collector, frother, activator, depressor and flocculant. Sometimes cyanide is used as depressant for pyrite. Tailings usually are led to tailing heaps or ponds. As a result, nickel concentrates containing 7 - 25% Ni are produced. Emissions: Ore handling and processing produce large amounts of dust, containing PM10 and several metals from the ore itself. Flotation produce effluents containing several organic agents used. Some of these chemicals evaporate and account for VOC emissions to air. Namely xanthates decompose hydrolytically to release carbon disulphide. Tailings effluent contains additional sulphuric acid from acid rock drainage. Waste: Tailings are deposed as piles and in ponds. Acid rock drainage occurs over a long period of time. METALLURGY AND REFINING: There are many different process possibilities to win the metal. The chosen process depends on the composition of the ore, the local costs of energy carrier and the local legislation. Basically two different types can be distinguished: the hydrometallurgical and the pyrometallurgical process, which paired up with the refining processes, make up five major production routes (See Tab.1). All this routes are covered, aggregated according to their market share in 1994. imageUrlTagReplace00ebef53-ae97-400f-a602-7405e896cb76 Pyrometallurgy. The pyrometallurgical treatment of nickel concentrates includes three types of unit operation: roasting, smelting, and converting. In the roasting step sulphur is driven off as sulphur dioxide and part of the iron is oxidised. In smelting, the roaster product is melted with a siliceous flux which combines with the oxidised iron to produce two immiscible phases, a liquid silicate slag which can be discarded, and a solution of molten sulphides which contains the metal values. In the converting operation on the sulphide melt, more sulphur is driven off as sulphur dioxide, and the remaining iron is oxidised and fluxed for removal as silicate slag, leaving a high-grade nickel – copper sulphide matte. In several modern operations the roasting step has been eliminated, and the nickel sulphide concentrate is treated directly in the smelter. Hydrometallurgy: Several hydrometallurgical processes are in commercial operation for the treatment of nickel – copper mattes to produce separate nickel and copper products. In addition, the hydrometal-lurgical process developed by Sherritt Gordon in the early 1950s for the direct treatment of nickel sulphide concentrates, as an alternative to smelting, is still commercially viable and competitive, despite very significant improvements in the economics and energy efficiency of nickel smelting technology. In a typical hydrometallurgical process, the concentrate or matte is first leached in a sulphate or chloride solution to dissolve nickel, cobalt, and some of the copper, while the sulphide is oxidised to insoluble elemental sulphur or soluble sulphate. Frequently, leaching is carried out in a two-stage countercurrent system so that the matte can be used to partially purify the solution, for example, by precipitating copper by cementation. In this way a nickel – copper matte can be treated in a two-stage leach process to produce a copper-free nickel sulphate or nickel chloride solution, and a leach residue enriched in copper. Refining: In many applications, high-purity nickel is essential and Class I nickel products, which include electrolytic cathode, carbonyl powder, and hydrogen-reduced powder, are made by a variety of refining processes. The carbonyl refining process uses the property of nickel to form volatile nickel-carbonyl compounds from which elemental nickel subsides to form granules. Electrolytic nickel refineries treat cast raw nickel anodes in a electrolyte. Under current the anode dissolves and pure nickel deposits on the cathode. This electrorefining process is obsolete because of high energy demand and the necessity of building the crude nickel anode by reduction with coke. It is still practised in Russia. Most refineries recover electrolytic nickel by direct electrowinning from purified solutions produced by the leaching of nickel or nickel – copper mattes. Some companies recover refined nickel powder from purified ammoniacal solution by reduction with hydrogen. Emissions: In all of the metallurgical steps, sulphur dioxide is emitted to air. Recovery of sulphur dioxide is only economic for high concentrated off-gas. Given that In the beneficiation step, considerable amounts of lime are added to the ore for pH-stabilisation, lime forms later flux in the metallurgical step, and decomposes into CO2 to form calcite. Dust carry over from the roasting, smelting and converting processes. Particulate emissions to the air consist of metals and thus are often returned to the leaching process after treatment. Chlorine is used in some leaching stages and is produced during the subsequent electrolysis of chloride solution. The chlorine evolved is collected and re-used in the leach stage. The presence of chlorine in wastewater can lead to the formation of organic chlorine compounds (AOX) if solvents etc. are also present in a mixed wastewater. VOCs can be emitted from the solvent extraction stages. A variety of solvents are used an they contain various complexing agents to form complexes with the desired metal that are soluble in the organic layer. Metals and their compounds and substances in suspension are the main pollutants emitted to water. The metals concerned are Cu, Ni, Co, As and Cr. Other significant substances are chlorides and sulphates. Wastewater from wet gas cleaning (if used) of the different metallurgical stages are the most important sources. The leaching stages are usually operated on a closed circuit and drainage systems, and are therefore regarded as minor sources. In the refining step, the combustion of sulphur leads to emissions of SO2. Nitrogen oxides are produced in significant amounts during acid digestion using nitric acid. Chlorine and HCl can be formed during a number of digestion, electrolytic and purification processes. Chlorine is used extensively in the Miller process and in the dissolution stages using hydrochloric acid and chlorine mixtrues respectively. Dust and metals are generally emitted from incinerators and furnaces. VOC can be emitted from solvent extraction processes, while organic compounds, namely dioxins, can be emitted from smelting stages resulting from the poor combustion of oil and plastic in the feed material. All these emissions are subject to abatement technologies and controlling. Large quantities of effluents contain amounts of metals and organic substances. Waste: Regarding the metallurgical step, several co-products, residues and wastes, which are listed in the European Waste Catalogue, are generated. Some of the process specific residues can be reused or recovered in preliminary process steps (e. g. dross, filter dust) or construction (e. g. cleaned slag). Residues also arise from the treatment of liquid effluents, the main residue being gypsum waste and metal hydroxides from the wastewater neutralisation plant. These residuals have to be disposed, usually in lined ponds. In the refining step, quantities of solid residuals are also generated, which are mostly recycled within the process or sent to other specialists to recover any precious metals. Final residues generally comprise hydroxide filter cakes (ironhydroxide, 60% water, cat I industrial waste). References: Kerfoot D. G. E. (1997) Nickel. In: Ullmann's encyclopedia of industrial chemis-try (ed. Anonymous). 5th edition on CD-ROM Edition. Wiley & Sons, London. technologyComment of smelting and refining of nickel concentrate, 7% Ni (CN): The nickel concentrate (6.78% beneficiated - product of the mining and beneficiation processes) undergoes drying, melting in flash furnace and converting to produce high nickel matte. The nickel matte undergoes grinding-floating separation and is refined through anode plate casting and electrolysis in order to produce electrolytic nickel 99.98% pure. Deng, S. Y., & Gong, X. Z. (2018). Life Cycle Assessment of Nickel Production in China. Materials Science Forum, 913, 1004-1010. doi:10.4028/www.scientific.net/MSF.913.1004 technologyComment of treatment of metal part of electronics scrap, in copper, anode, by electrolytic refining (SE, RoW): Production of cathode copper by electrolytic refining.
technologyComment of platinum group metal mine operation, ore with high palladium content (RU): imageUrlTagReplace6250302f-4c86-4605-a56f-03197a7811f2 technologyComment of platinum group metal, extraction and refinery operations (ZA): The ores from the different ore bodies are processed in concentrators where a PGM concentrate is produced with a tailing by product. The PGM base metal concentrate product from the different concentrators processing the different ores are blended during the smelting phase to balance the sulphur content in the final matte product. Smelter operators also carry out toll smelting from third part concentrators. The smelter product is send to the Base metal refinery where the PGMs are separated from the Base Metals. Precious metal refinery is carried out on PGM concentrate from the Base metal refinery to split the PGMs into individual metal products. Water analyses measurements for Anglo Platinum obtained from literature (Slatter et.al, 2009). Mudd, G., 2010. Platinum group metals: a unique case study in the sustainability of mineral resources, in: The 4th International Platinum Conference, Platinum in Transition “Boom or Bust.” Water share between MC and EC from Mudd (2010). Mudd, G., 2010. Platinum group metals: a unique case study in the sustainability of mineral resources, in: The 4th International Platinum Conference, Platinum in Transition “Boom or Bust.” technologyComment of treatment of automobile catalyst (RoW): After collection and transportation to the intermediary dealer, the scrap is ground in a mill. The resulting material is fed to specialised refineries. The metallurgical step consists of an arc-furnace. Same refining process as in primary production assumed (selective precipitation) technologyComment of treatment of automobile catalyst (RER): The production process consists of three steps: Collection, Beneficiation and Refining. COLLECTION: Spoiled automotive catalysts are bought by specialised enterprises from different origins. Part of it originates from scrap dealer recycling end-of-life cars. Further more during the cars operating phase, defective catalysts are exchanged in garages. The third sources is the production waste, i. e. defective catalysts which do not reach market. In most cases, there are fix agreements between the different supplier and the intermediary trade. Although the trade with PGM containing scrap is risky. Motor car manufacturer built up their own internal recycling systems with their contractor garages and gained access to exchanged catalysts. Emissions: Emissions during collection are gases from transportation and dust from dismantling. Also in this step the combustion leads to emissions of SO2. No serious water emissions are reported. BENEFICIATION: The catalysts are dismantled and then sold to refining companies. Refineries too have long-term contracts with the intermediary trade. Emissions: Emissions during beneficiation are gases from transportation and dust from dismantling. Also in this step the combustion leads to emissions of SO2. No serious water emissions are reported. REFINING: The scrap first is shredded and then pyrometallurgicaly processed: The scrap is smelted in an electric arc furnace, and the ceramic wafer is slagged. The PGMs are concentrated in the collector metal, usually copper. Low-content PGM scrap is often smelted together with other non-ferrous metal matte. This is cheap, but effects a high loss in PGM. The collector matte from the furnace then is treated hydrometallurgically by re-precipitation. In this step usually production scrap from other industries (glass, chemical laboratories) is joined. The overall PGM-yield is 98 % for platinum and 85 % for rhodium. Emissions: Dust and metals are generally emitted from incinerators and furnaces. VOC can be emitted from solvent extraction processes, while organic compounds, namely dioxins, can be emitted from smelting stages resulting from the poor combustion of oil and plastic in the feed material. All these emissions are subject to abatement technologies and controlling. Effluents from refining contain considerable amounts of metals and organic substances. Waste: Solid residues from pyrometallurgical step are usually re-used in copper facilities, final residues generally comprise hydroxide filter cakes. References: Hagelücken C. (2001b) Die Märkte der Katalysatormetalle Platin, Palladium und Rhodium. In: Autoabgaskatalysatoren, Vol. 612. pp. 95-115. Expert Verlag, Renningen. Online-Version under: http://www.dmc-2.de/pmc_eng/Veroeffentlichungen_2/Die%20M%C3%A4rkte%20der%20Katalysatormetalle%20Pt%20Pd%20Rh.pdf.
Origin | Count |
---|---|
Bund | 2430 |
Land | 70 |
Type | Count |
---|---|
Ereignis | 1 |
Förderprogramm | 2398 |
Text | 41 |
Umweltprüfung | 3 |
unbekannt | 51 |
License | Count |
---|---|
closed | 65 |
open | 2401 |
unknown | 28 |
Language | Count |
---|---|
Deutsch | 2482 |
Englisch | 252 |
Resource type | Count |
---|---|
Archiv | 5 |
Bild | 4 |
Datei | 7 |
Dokument | 22 |
Keine | 1856 |
Unbekannt | 4 |
Webdienst | 3 |
Webseite | 618 |
Topic | Count |
---|---|
Boden | 1865 |
Lebewesen & Lebensräume | 2040 |
Luft | 1431 |
Mensch & Umwelt | 2494 |
Wasser | 2494 |
Weitere | 2494 |