API src

Found 19 results.

Similar terms

s/222rn/220Rn/gi

Was ist Radon?

Was ist Radon? Radon kommt überall in der Umwelt vor. Es entsteht im Boden als eine Folge des radioaktiven Zerfalls von natürlichem Uran , das im Erdreich in vielen Gesteinen vorkommt. Radon ist ein radioaktives Gas, das man weder sehen, riechen oder schmecken kann. Etwa sechs Prozent der Todesfälle durch Lungenkrebs in der Bevölkerung sind nach aktuellen Erkenntnissen auf Radon und seine Zerfallsprodukte in Gebäuden zurückzuführen. Aus natürlichem Uran in Böden und Gesteinen entsteht Radon , das sich in Gebäuden ansammeln kann. Dort erhöht es das Lungenkrebsrisiko der Bewohner. Radon ist ein radioaktives Gas, das man weder sehen, riechen oder schmecken kann. Radon wird aus allen Materialien freigesetzt, in denen Uran vorhanden ist. Es kommt überall auf der Welt vor. Der größte Teil der Strahlung , der die Bevölkerung aus natürlichen Strahlenquellen in Deutschland ausgesetzt ist, ist auf Radon zurückzuführen. Radon als Teil der Zerfallsreihe von Uran-238 Zerfallsreihe von Radon-222 Radon entsteht als Zwischenprodukt der Zerfallsreihe des in allen Böden und Gesteinen vorhandenem Uran -238 über Radium-226. Die Isotope (Sonderformen) Radon -219 (historisch "Actinon" genannt), Radon -220 ("Thoron") und Radon-222 ( Radon ) sind Teile der natürlichen Zerfallsreihen von Uran -235 ( Uran -Actinium-Reihe) Thorium-232 (Thorium-Reihe) und Uran -238 ( Uran -Radium-Reihe). Sie sind selbst radioaktiv, d.h. ihre Atomkerne zerfallen mit der Zeit und senden dabei Strahlung aus. Wenn auf www.bfs.de von " Radon " die Rede ist, ist immer Radon-222 aus der Uran -Radium-Reihe gemeint. Strahlenbelastung durch Radon Radon ist ein radioaktives Element. Der Atomkern radioaktiver Elemente ist instabil und zerfällt. Bei diesem Zerfall entsteht Strahlung . Die Halbwertszeit von Radon beträgt 3,8 Tage. Das bedeutet, dass – unabhängig davon, in welcher Konzentration Radon vorhanden ist – nach fast vier Tagen die Hälfte davon in seine Folgeprodukte zerfallen ist. Kurzlebige Radon -Folgeprodukte sind Isotope von Polonium, Wismut und Blei. Diese sind ebenfalls radioaktiv und haben eine sehr kurze Halbwertszeit . Ihre Atomkerne zerfallen in wenigen Minuten und senden dabei Alphastrahlen aus, die menschliches Gewebe schädigen können. Die radioaktiven Radon -Folgeprodukte lagern sich an Aerosole (feinste Teilchen in der Luft) an, die eingeatmet werden. Wenn die Radon -Folgeprodukte in der Lunge zerfallen, senden sie dort Strahlung aus. Diese Strahlung kann Zellen im Gewebe der Lunge schädigen und so Lungenkrebs auslösen. Radon-Risiko in Gebäuden Radon wird über Poren, Spalten und Risse aus Böden und Gesteinen freigesetzt – und gelangt auch in Gebäude. Dort sammelt sich Radon in Innenräumen an. Radon ist nach dem Rauchen eine der wichtigsten Ursachen für Lungenkrebs . Etwa sechs Prozent der Todesfälle durch Lungenkrebs in der Bevölkerung sind nach aktuellen Erkenntnissen auf Radon und seine Zerfallsprodukte in Gebäuden zurückzuführen. Verschiedene Schutzmaßnahmen helfen, die Konzentration von Radon in einem Gebäude zu verringern. Medien zum Thema Broschüren und Video downloaden : zum Download: Radon - ein kaum wahrgenommenes Risiko (PDF, Datei ist barrierefrei⁄barrierearm) … PDF 3 MB Broschüre Radon - ein kaum wahrgenommenes Risiko downloaden : zum Download: Radon in Innenräumen (PDF, Datei ist barrierefrei⁄barrierearm) … PDF 853 KB Broschüre Radon in Innenräumen Video Radon Zu viel Radon im Haus kann Lungenkrebs verursachen. Aber woher weiß ich, ob ich betroffen bin? Wie kann ich es messen? Was kann ich gegen zu viel Radon tun? mehr anzeigen Stand: 13.11.2024 Ionisierende Strahlung Häufige Fragen Was ist Radon? Wie breitet sich Radon aus und wie gelangt es in Häuser? Welche Radon-Konzentrationen treten in Häusern auf? Alle Fragen

Radon-Messgeräte

Radon-Messgeräte Bei Radon -Messgeräten gibt es zwei Grundtypen: Passive Radon -Detektoren brauchen zum Messen keinen Strom, elektronische Messgeräte dagegen nutzen Strom. Passive Geräte werden in der Regel ein Mal verwendet, sind günstig und klein. Sie eignen sich gut, um nach längerer Messung und anschließender Auswertung im Labor einen Durchschnittswert zu liefern. Elektronische Geräte eignen sich auch für Momentaufnahmen. Sie können mehrfach genutzt werden und zeigen die Ergebnisse in der Regel gleich an. Je nach Messzweck gibt das BfS Hinweise, was zu beachten ist. Arten von Messgeräten Einsatzgebiete Qualitätskriterien von Messgeräten Tipps & Hinweise zur Anwendung von Radon-Messgeräten Häufige Fragen zu Messergebnissen Passive und elektronische Radon-Messgeräte (Beispiele) Das radioaktive Gas Radon ( Radon-222 ) kann man nicht sehen, riechen oder schmecken – und nur schwer nachweisen. Gut nachweisen und messen lässt sich jedoch die beim radioaktiven Zerfall von Radon und seinen Folgeprodukten Polonium, Wismut und Blei entstehende Strahlung. Spezielle Messgeräte registrieren diese Strahlung zum Beispiel in Wohn- und Arbeitsräumen und ermitteln aus den Daten dann die Konzentration von Radon vor Ort. Arten von Messgeräten Um die Strahlung zu messen, die von Radon und seinen Folgeprodukten ausgeht, lassen sich passive Detektoren sowie elektronische Messgeräte nutzen. Passive Radon-Messgeräte Elektronische Radon-Messgeräte Passive Radon-Messgeräte Passive Radon-Messgeräte (Beispiele) Passive Detektoren sind kleine Plastikbehälter, die keinen Strom benötigen, weder Licht noch Geräusche aussenden, sondern lediglich ausgelegt werden. Das Messergebnis wird nach Ende des Messzeitraumes im Labor ermittelt. Passive Radon -Messgeräte sind besonders geeignet, um per Langzeitmessung herauszufinden, wie hoch die Radon -Konzentration in einem Raum über einen längeren Zeitraum im Durchschnitt ist. Aufbau und Funktionsweise Passive Radon -Messgeräte bestehen typischerweise aus einer speziellen Plastikfolie (Detektorfolie), die in einem Schutzgehäuse liegt. In dieses auch Diffusionskammer genannte Schutzgehäuse kann Radon aus der Umgebungsluft eindringen. Anders als Radon können Staub und Aerosole sowie Radon -Folgeprodukte nicht in die Diffusionskammer gelangen. Innerhalb der Diffusionskammer stößt jedes der dort eingedrungenen Radon -Atome bei seinem radioaktiven Zerfall ein Alpha-Teilchen aus, das beim Auftreffen auf die Detektorfolie eine winzige, nur einige Nanometer kleine Spur hinterlässt. Die beim radioaktiven Zerfall des Radons in der Diffusionskammer entstehenden Radon -Folgeprodukte erzeugen bei ihrem weiteren eigenem Zerfall ebenfalls solche Spuren. Geräte, die Messwerte mithilfe von Spuren auf Detektorfolie ermitteln, werden fachsprachlich auch als "Festkörperspurdetektor" bezeichnet. Messzeitraum Eine Messung mit einem passiven Radon -Messgerät verläuft in der Regel über einen längeren Zeitraum, der von mehreren Wochen und Monaten bis hin zu einem Jahr reichen kann. Auswertung Nach Abschluss der Messung wird die Detektorfolie in einem Labor aus der Diffusionskammer entnommen und alle Spuren gezählt, die sich im Laufe der Zeit auf der Detektorfolie angesammelt haben. Je mehr Spuren auf der Detektorfolie zu finden sind, desto mehr Radon gab es im Messzeitraum am Ort der Messung. Um die winzig kleinen Spuren auf der Folie sehen zu können, werden sie im Labor mit Hilfe eines chemischen oder elektrochemischen Verfahrens größer geätzt: Sie sind dann immer noch sehr klein im Mikrometer-Bereich, aber nun im Mikroskop sichtbar und zählbar. Das Ergebnis ist immer die Summe aller Spuren von Zerfällen im gesamten Messzeitraum. Diese Summierung wird fachsprachlich auch als "integrierend" bezeichnet. Im Auswertesystem des Labors ist mithilfe einer Kalibrierung hinterlegt, welche mittlere Radon -Konzentration sich im vorgegebenen Messzeitraum aus der Gesamtmenge der Spuren ergibt (Durchschnittswert). Ob es Schwankungen der Radon -Konzentration im Verlauf der Messungen gab, ist aus dem Messergebnis nicht ersichtlich. Varianten Elektretdetektor (Beispiel) Neben den hier beschriebenen Festkörperspurdetektoren (FKSD) werden in der Praxis auch Elektretdetektoren eingesetzt, jedoch deutlich seltener. In diesen auch "Elektrete" oder "Elektret-Ionisationskammer" genannten Detektoren wird eine elektrisch geladene Detektorscheibe aus Teflon genutzt, deren Spannung sich mit jedem radioaktiven Zerfall in der Diffusionskammer minimal verringert. Nach Abschluss des Messzeitraums werden hier keine Spuren ausgezählt, sondern ein Spannungsabfall gemessen. Elektronische Radon-Messgeräte Elektronische Radon-Messgeräte (Beispiele) Elektronische Radon -Messgeräte benötigen für die Messungen eine Stromzufuhr. Das Messergebnis lässt sich direkt im Display oder mit einem an das Messgerät angeschlossenen Computer ablesen. Elektronische Radon -Messgeräte sind besonders geeignet, um per Kurzzeitmessung herauszufinden, wie hoch die Radon -Konzentrationen in einem Raum aktuell ist ("Momentaufnahme") und wie sie sich zum Beispiel durch Schutzmaßnahmen oder im Tages-, Monats- oder Jahresverlauf verändert. Aufbau und Funktionsweise Im Schutzgehäuse elektronischer Radon -Messgeräte sind ein elektronischer Detektor nebst Messelektronik sowie eine Kammer platziert. In diese Kammer kann Radon aus der Umgebungsluft eindringen. Umgebungsluft kann auch angesaugt und aktiv in die Kammer gepumpt werden. Die Umgebungsluft enthält immer auch Radon , da Radon überall in der Umwelt vorkommt. Anders als Radon können Staub und Aerosole sowie Radon -Folgeprodukte nicht in die Kammer gelangen. Der elektronische Detektor in der Kammer erfasst die ionisierende Strahlung, die bei jedem Zerfall von Radon und seinen Folgeprodukten entsteht. Dafür nutzen elektronische Detektoren verschiedene physikalische Effekte: Beim photoelektrischen Effekt setzt die ionisierende Strahlung elektrisch geladene Teilchen im Messgerät frei, die der Detektor verstärkt und registriert. Dies geschieht zum Beispiel in elektronischen Radon -Messgeräten mit Ionisationskammern. Bei Halbleitermaterialien wie Silizium erzeugt die ionisierende Strahlung freie Ladungen. Das im Detektor eingebaute elektrische Feld lenkt diese Ladungen zu den Metallkontakten und erzeugt einen messbaren Stromimpuls. Dies geschieht zum Beispiel in mit Halbleiterdetektoren bestückten elektronischen Radon -Messgeräten. Beim Lumineszenz-Effekt regt die ionisierende Strahlung bestimmte Materialien (Szintillatoren) zum Leuchten an. Der Detektor verstärkt und registriert die so in der Diffusionskammer entstehenden optischen Effekte (Lichtblitze). Dies geschieht zum Beispiel in mit Szintillationsdetektoren wie zum Beispiel einer Lucas-Zelle ausgerüsteten elektronischen Radon -Messgeräten. Messzeitraum Elektronische Radon -Messgeräte ermöglichen "Momentaufnahmen" in Form einer Messung über einen eher kurzen Zeitraum. Längerfristige Messungen sind ebenfalls möglich. Auswertung Die mithilfe der Detektoren erfassten Effekte werden in elektronischen Radon -Messgeräten aufgezeichnet, umgerechnet und direkt als ermittelte Radon -Konzentration im Display des Messgerätes angezeigt und/oder in einer Datei gespeichert. Mithilfe mehrerer kurzer Messungen lassen sich mit elektronischen Radon -Messgeräten auch zeitliche Verläufe der Radon -Konzentration ermitteln, die Rückschlüsse auf Tagesverläufe oder Wirkungen von zum Beispiel Gegenmaßnahmen wie Lüften ermöglichen. Je kürzer die Messung, desto größer ist allerdings auch die Messunsicherheit. Die Messgenauigkeit hängt jedoch nicht nur von der Messdauer, sondern auch vom eingebauten Detektor ab. Anwendungsmöglichkeiten (modellabhängig) Elektronische Radon -Messgeräte können mit einer Ansaugpumpe betrieben werden, um speziell Luft aus bestimmten Bereichen zu messen, die Radon -Eintrittspfade sein können (zum Beispiel Rohrdurchführungen in der Bodenplatte eines Hauses) oder mit Hilfe einer Messsonde in der Erde die Radon -Konzentration in der Bodenluft zu bestimmen. Auch Langzeitmessungen sind grundsätzlich möglich. Dabei ist zu beachten, dass die Stromversorgung des Gerätes über den gesamten Zeitraum sichergestellt ist, um ein belastbares Messergebnis zu erhalten. Bei einer Langzeitmessung sollte daher von Batteriebetrieb abgesehen und stattdessen im Netzbetrieb gemessen werden. Das Messsignal elektronischer Radon -Messgeräte kann auch zur Steuerung von beispielsweise Lüftungseinrichtungen genutzt werden. Neben der reinen Zählung von Zerfällen zur Ermittlung der Radon -Konzentration ist – abhängig vom eingebauten Detektor – auch eine Analyse der Zerfallsenergie möglich. Dies ermöglicht "sortierte" Messungen, die zwischen dem Vorkommen von Radon ( Radon-222 ) und dem Radon -Isotop Thoron ( Radon -220) und deren Folgeprodukten unterscheiden. Handelsübliche Geiger-Zähler (Geiger-Müller-Zählrohre) sind übrigens nicht gut geeignet, um Radon -Konzentrationen zu ermitteln, da sie nicht nur speziell die von Radon und/oder Radon -Folgeprodukten ausgehende Strahlung messen, wie es die auf Radon spezialisierten Messgeräte machen. Einsatzgebiete Nicht jedes der auf dem Markt erhältlichen Radon -Messgeräte ist für jeden Anwendungsfall geeignet. Manche Messungen setzen zudem umfangreiches Fachwissen voraus. Dazu gehören Messungen zur Ermittlung von Radon in der Bodenluft, zur Bestimmung von Radon in Wasser oder zur Freisetzung von Radon aus Baumaterial. Diese Messungen sind üblicherweise Spezialist*innen vorbehalten. Vergleichsweise einfach ist dagegen die Messung von Radon in der Raumluft. Je nach Messzweck empfiehlt das BfS hierfür unterschiedliche Messverfahren. Aus Gründen der Wettbewerbsneutralität kann das BfS jedoch keine speziellen Produkte und/oder Anbietende empfehlen. Für interessierte Verbraucherinnen und Verbraucher ist es in jedem Fall ratsam, vor Erwerb eines Messgeräts zu überlegen, welche Messzwecke und Betriebsanforderungen ihren persönlichen Bedürfnissen entsprechen. Messzwecke und Messverfahren Qualitätskriterien von Messgeräten Um die Qualität der Messergebnisse sicherzustellen, sollten Messgeräte jeglicher Art nur erworben werden, wenn sie Qualitätsanforderungen erfüllen, und nur betrieben werden, wenn sie regelmäßig auf ihre Funktionstauglichkeit überprüft werden. Das gilt auch für Radon -Messgeräte. Für diese empfiehlt das BfS: Passive Radon-Messgeräte Elektronische Radon-Messgeräte Passive Radon-Messgeräte Qualitätskriterien für passive Radon-Messgeräte Passive Radon-Messgeräte (Beispiele) Passive Radon -Messgeräte werden einmalig verwendet. Gekauft wird die eigentliche Messung, für die ein passives Radon -Messgerät zur Verfügung gestellt wird, das nach der Messung zur Auswertung zum anbietenden Mess-Labor zurückgeschickt wird. Verbraucher*innen sollten darauf achten, dass die Mess-Anbietenden Qualitätssicherung betreiben, indem beispielsweise das Auswertelabor an Vergleichsprüfungen teilnimmt oder es für solche Messungen etwa bei der Deutschen Akkreditierungsstelle akkreditiert ist. Tipp: Bieten Messlabore Radon -Messungen am Arbeitsplatz an, müssen sie sich beim BfS als "anerkannte Stelle gemäß § 155 Strahlenschutzverordnung " anerkennen lassen. Damit wird die Qualität der Anbieter sichergestellt. Welche Anbieter über diese Anerkennung des BfS verfügen, zeigt zum Beispiel www.bfs.de/radon-messen. Das BfS empfiehlt, diesen Qualitätsanspruch allgemein auf Radonmessungen anzuwenden. Elektronische Radon-Messgeräte Qualitätskriterien für elektronische Radon-Messgeräte Kalibriermarke eines Radonmessgeräts Elektronische Radon -Messgeräte können mehrfach und dauerhaft verwendet werden. Verbraucher*innen sollten beim Kauf eines solchen Gerätes darauf achten, dass es kalibriert ist, das heißt, dass überprüft wurde, ob und in welchem Maße der angezeigte Wert vom tatsächlichen Wert abweicht. Um sicherzustellen, dass der Messwert über die gesamte Lebensdauer des Messgerätes korrekt angezeigt wird, sollte das Messgerät alle 2 Jahre bei einem Kalibrierlabor rekalibriert werden. Ebenso sollte regelmäßig der so genannte Nulleffekt überprüft werden: Was zeigt das Gerät an, wenn (fast) kein Radon da ist – zum Beispiel an der frischen Luft? Tipps & Hinweise zur Anwendung von Radon-Messgeräten Woran erkenne ich ein gutes Radon-Messgerät? Gute passive Radon -Messgeräte sind zum Beispiel daran zu erkennen, dass sie gute Ergebnisse in Vergleichs- und Eignungsprüfungen erzielt haben, das heißt, dass ihre dort erzielten Messergebnisse nur wenig vom Vergleichswert abwichen. Gute elektronische Radon -Messgeräte zeichnen sich insbesondere dadurch aus, dass sie für den beabsichtigten Einsatz zum Beispiel durch ausreichende Messempfindlichkeit (Mindestnachweisgrenze) und ausreichenden Messbereich, aber auch durch passende Energieversorgung (Netzteil bei kürzeren und/oder stationären, Batterie bei längeren und/oder mobilen Messungen) und Datenspeicherkapazitäten optimal geeignet sind. Zudem sollten sie für die am Messort vorherrschende Temperatur und Luftfeuchte ausgelegt sein. Achten Sie auf Herstellerangaben zur Kalibrierung des Gerätes. Woran erkenne ich gute Anbieter*innen für Radon-Messungen? Gute Anbieter*innen von Radon -Messungen sind zum Beispiel daran zu erkennen, dass sie eine Radon -Weiterbildung vorweisen können, mit kalibrierten Geräten arbeiten (wenn sie elektronische Geräte einsetzen), zur Aufstellung und Handhabung passiver Radon -Messgeräte verständliche Vorgaben bereitstellen, das Vorgehen zur Bestimmung der Radon -Konzentration schriftlich dokumentieren, ggf. akkreditiert sind für das eingesetzte Messverfahren (beispielsweise bei der Deutschen Akkreditierungsstelle ), vom BfS anerkannt sind, wenn sie die gesetzlich vorgeschriebenen Pflichtmessungen an Arbeitsplätzen anbieten. Worauf muss ich bei der Benutzung von Radon-Messgeräten achten? Lesen Sie die Bedienungsanleitung und beachten Sie die Hinweise des Herstellers, bevor Sie ein Radon -Messgerät auspacken, aufstellen und in Betrieb nehmen. Wählen Sie einen Aufstellort für das Radon -Messgerät aus, der ungestört ist, so dass Sie ihn auch mit aufgestelltem Messgerät weiter in gewohnter Weise nutzen können, an dem das Radon -Messgerät permanent mit der Raumluft Kontakt hat, der nicht beispielsweise an Heizung oder Fenster liegt, um den Einfluss von Luftströmungen und Außenluft auf die Messergebnisse zu vermeiden, der repräsentativ ist für die Nutzung des Raumes. Solche ungestörten Aufstellflächen finden sich zum Beispiel auf einem Wohnzimmerschrank oder auf einem Regal. Decken Sie das Radon -Messgerät nicht ab, und stellen Sie es nicht in einem geschlossenen Schrank auf. Sollten Sie elektrische Radon -Messgeräte verwenden, stellen Sie die Stromversorgung über den gesamten Messzeitraum sicher. Das Radon -Messgerät sollte über den gesamten Messzeitraum möglichst nicht bewegt werden. Ein vorsichtiges kurzes Verschieben des Messgerätes, wie es beispielsweise beim Staubwischen nötig ist, ist aber möglich. Idealerweise sollte jeder Innenraum mit einem eigenen Messgerät ausgestattet werden. Ist das nicht möglich, sollten als wichtigste Räume die Haupt-Aufenthaltsräume wie beispielsweise Wohnzimmer, Schlafzimmer, Kinderzimmer, Hobbykeller und Küche ausgewählt werden. Verkehrsflächen wie zum Beispiel Flure, Eingangsbereiche oder auch Sanitärräume sind nicht als Aufenthaltsräume zu betrachten. In Untergeschossen von Gebäuden finden sich typischerweise die höchsten Radon -Konzentrationen. Woran erkenne ich, ob mein Radon-Messgerät korrekt funktioniert? Ob ein Messgerät funktionstüchtig ist und korrekte Messergebnisse liefert, ist für Laien in der Regel nur schwer zu erkennen. Bei passiven Radon -Messgeräten sollte in jedem Fall das Schutzgehäuse (Diffusionskammer) unversehrt sein. Bei elektronischen Radon -Messgeräten liefert ein Test an der frischen Luft einen Anhaltspunkt: Zeigt das Gerät bei einem Einsatz im Freien nicht die zu erwartenden geringen Werte im Rahmen der durchschnittlichen Radon-Konzentration in Deutschland in Höhe von etwa 3 bis 31 Becquerel pro Kubikmeter an, sondern liefert stattdessen Werte von über 100 Becquerel pro Kubikmeter, könnte dies auf eine Kontamination des Gerätes hinweisen. Mögliche Hinweise auf Fehlfunktionen sind i. d. R. in der Bedienungsanleitung zu finden. Kann ich alleine Radon messen oder beauftrage ich besser einen Spezialisten? Passive Radon -Messgeräte können Verbraucherinnen und Verbraucher allein aufstellen, wenn sie dabei die mitgelieferte Anleitung beachten. Nach Ende des Messzeitraumes senden sie die Messgeräte wie in der mitgelieferten Anleitung beschrieben zurück an das Auswerte-Labor des Mess-Anbieters. Einfache elektronische Radon -Messgeräte für zum Beispiel Langzeitmessungen können Verbraucherinnen und Verbraucher ebenfalls allein aufstellen und Messwerte ermitteln, wenn sie dabei die mitgelieferte Anleitung beachten. Um speziellere elektronische Radon -Messgeräte für besondere Messzwecke einzusetzen, sollten Verbraucherinnen und Verbraucher besser Fachleute hinzuziehen. Wer kann mir ggf. bei einer Radon-Messung helfen? Fachleute mit Weiterbildungen im Bereich Radon sind beispielsweise Radon -Fachpersonen, Radon -Messdienstleister*innen oder Radon -Sachverständige. Auch die für den Schutz vor Radon zuständigen Landesbehörden haben Informationsangebote und Radon -Fachstellen eingerichtet. Radon -Messgeräte können direkt beim Hersteller erworben werden. Bieten Messlabore gesetzlich vorgeschriebene Pflichtmessungen von Radon an Arbeitsplätzen an, müssen sie sich beim BfS als "anerkannte Stelle gemäß § 155 Strahlenschutzverordnung" anerkennen lassen. Damit wird die Qualität der Messungen sichergestellt. Diese vom BfS anerkannten Anbieter können auch Geräte für Messungen in Privaträumen bereitstellen. Radon-Messergebnisse ablesen und interpretieren Messungen mit Radon -Messgeräten haben als Ergebnis entweder die Radon - Exposition (in Becquerel mal Stunde pro Kubikmeter) oder die Radon - Aktivitätskonzentration (in Becquerel pro Kubikmeter), die oft auch verkürzt als " Radon -Konzentration" bezeichnet wird. Mit der Radon -Konzentration wird die Radon-Situation in Innenräumen bewertet: Liegt sie über dem im Strahlenschutzgesetz festgelegten Referenzwert von 300 Becquerel pro Kubikmeter Raumluft für Aufenthaltsräume und Arbeitsplätze, sind Maßnahmen zur Reduzierung zu prüfen. Zeigt ein Messgerät als Ergebnis die Radon - Exposition an, muss dieses Ergebnis durch die Messdauer in Stunden geteilt werden, um die Radon -Konzentration zu errechnen. Häufige Fragen zu Messergebnissen Medien zum Thema Broschüren und Video downloaden : zum Download: Radon - ein kaum wahrgenommenes Risiko (PDF, Datei ist barrierefrei⁄barrierearm) … PDF 3 MB Broschüre Radon - ein kaum wahrgenommenes Risiko downloaden : zum Download: Radon in Innenräumen (PDF, Datei ist barrierefrei⁄barrierearm) … PDF 853 KB Broschüre Radon in Innenräumen Video Radon Zu viel Radon im Haus kann Lungenkrebs verursachen. Aber woher weiß ich, ob ich betroffen bin? Wie kann ich es messen? Was kann ich gegen zu viel Radon tun? mehr anzeigen Stand: 20.12.2024 Ionisierende Strahlung Häufige Fragen Was ist Radon? Wie breitet sich Radon aus und wie gelangt es in Häuser? Welche Radon-Konzentrationen treten in Häusern auf? Alle Fragen

Radon-Kalibrierlaboratorium

Radon-Kalibrierlaboratorium Zur Qualitätssicherung von Messungen von Radon - und Radon -Folgeprodukten unterhält das Bundesamt für Strahlenschutz ( BfS ) ein durch die Deutsche Akkreditierungsstelle (DAkkS) akkreditiertes Kalibrierlaboratorium. Das Laboratorium bietet neben den Kalibrierungen auch Typprüfungen und Vergleichsprüfungen für Messgeräte an. Außerdem werden wissenschaftliche Untersuchungen zu messtechnischen Grundlagen und zur Bewertung und Entwicklung von Messmethoden durchgeführt. Eine verlässliche Aussage zur Konzentration von Radon und seinen Folgeprodukten ist nur durch Messung möglich. Sollen Messwerte miteinander verglichen werden, so müssen die Messungen mit nachvollziehbarer Qualität durchgeführt und ausgewertet werden. Dazu sollen Messgeräte zum Beispiel regelmäßig kalibriert werden. Beim Kalibrieren wird der Messwert eines zu kalibrierenden Messgerätes mit dem Messwert eines Referenzmessgerätes ("Normal") verglichen. Ziel ist dabei, die Abweichung vom Normal und die Unsicherheit dieser Abweichung zu bestimmen. Über eine Kette von Normalen wird die Kalibrierung eines Messgerätes so bis auf das in der Hierarchie höchste Normal, das Primärnormal , zurückgeführt. Das Kalibrierlaboratorium des BfS Das Kalibrierlaboratorium für Messgeräte zur Bestimmung von Strahlenexpositionen durch Radon und Radon -Folgeprodukte des Bundesamtes für Strahlenschutz ( BfS ) ist ein zentrales Element zur Qualitätssicherung für Messungen in diesem Bereich des Strahlenschutzes. Das Kalibrierlaboratorium stellt die anerkannte messtechnische Referenz für die Umsetzung von Anforderungen aus dem Strahlenschutzgesetz zum Schutz vor Radon an Arbeitsplätzen und den Schutz vor erhöhten Expositionen durch Radon in Wohn- und Aufenthaltsräumen dar. Qualitätssicherung 0,4-Kubikmeter-Edelstahlbehälter im Radon-Kalibrierlabor mit Mess- und Steuerungssystem sowie Radon-Dosiersystem Zur Sicherung eines bundeseinheitlichen Qualitätsstandards bei der Messung von Radon und Radon -Folgeprodukten findet neben der Kalibrierung von Messgeräten auch ein umfangreiches Programm zur Qualitätssicherung von Messungen statt. Dieses Programm richtet sich an behördlich bestimmte Messstellen und anerkannte Stellen für die Messung von Radon an Arbeitsplätzen, Anwender mit dem Angebot zur regelmäßigen Kalibrierung der Messgeräte und Hersteller von Messgeräten mit dem Angebot, die Konformität der messtechnischen Eigenschaften ihrer Geräte mit international festgelegten normativen Anforderungen zu bewerten. Für Exposimeter (integrierende nichtelektronische Messgeräte, auch für passive Messgeräte bezeichnet) werden regelmäßig Vergleichs– und Eignungsprüfungen durchgeführt. Die Angebote zur Qualitätssicherung der Messungen von Radon-222 und Radon-222 -Folgeprodukten werden sowohl von nationalen als auch internationalen Laboren und Institutionen nachgefragt. Methodische Weiterentwicklung Neben den Programmen zur Qualitätssicherung werden wissenschaftliche Untersuchungen sowohl zu den messtechnischen Grundlagen als auch zur Bewertung und Entwicklung von Messmethoden durchgeführt, um beispielsweise den Einfluss von Thoron auf die Messergebnisse zu untersuchen. Diese Arbeiten dienen der methodischen Weiterentwicklung mit dem Ziel, auf aktuelle Probleme zeitnah reagieren zu können. BfS -Service: Qualitätssicherung von Radon- und Radonfolgeprodukt-Messgeräten Das Bundesamt für Strahlenschutz bietet folgende Dienstleistungen an: Kalibrierung von Messsystemen für die Messgröße " Aktivitätskonzentration von Radon-222 in Luft und die Messgröße "Potenzielle Alphaenergiekonzentration der kurzlebigen Radon-222 -Folgeprodukte (Polonium-218, Blei-214, Wismut -214) in Luft, Kalibrierung von Messsystemen für Radon-222 mit integrierenden, nichtelektronischen Messgeräten (Exposimeter, auch passive Messgeräte genannt). Prüfung der messtechnischen Eigenschaften von Messgeräten sowie Prüfung von Messverfahren. Stand: 09.10.2024

Lehm als Baumaterial

Lehm als Baumaterial Übliche mineralische Baumaterialien für Häuser wie Beton, Ziegel, Gips und Porenbeton enthalten natürliche Radionuklide . Eine gesundheitlich relevante Strahlenbelastung für die Bewohner des Hauses entsteht dadurch normalerweise nicht. Derzeit wird die Frage diskutiert, ob als Baumaterial verwendeter ungebrannter Lehm zu einer gesundheitlich bedenklichen Strahlenbelastung führen kann, da ungebrannter Lehm das radioaktive Gas Thoron in die Raumluft abgeben kann. Anders als bei Radon , dessen Vorkommen in Wohnräumen und dessen gesundheitlichen Wirkungen gut erforscht sind, sind beim Thoron aber weitere Untersuchungen erforderlich, um seine gesundheitliche Bedeutung sicher bewerten zu können. Übliche mineralische Baumaterialien für Häuser wie Beton, Ziegel, Gips und Porenbeton enthalten natürliche Radionuklide . Eine gesundheitlich relevante Strahlenbelastung für die Bewohner des Hauses entsteht dadurch normalerweise nicht. Lehm als Baumaterial: Innenraum mit Lehmputz Auch Lehm gewinnt als Baumaterial im Kontext des nachhaltigen Bauens wieder an Bedeutung: Seine ökologischen und guten bauphysikalischen Eigenschaften sorgen für ein gutes Innenraumklima. Dabei wird immer wieder die Frage diskutiert, ob als Baumaterial verwendeter ungebrannter Lehm zu einer gesundheitlich bedenklichen Strahlenbelastung führen kann. Der Grund: Ungebrannter Lehm kann das radioaktive Gas Thoron in die Raumluft abgeben. Es ist nicht auszuschließen, dass es in Einzelfällen zu erhöhten Thoron-Werten in der Raumluft kommt. Radon-222 und Radon -220 (auch Thoron genannt) sind beides Isotope des natürlichen, gasförmigen Elements Radon . Wenn verkürzt von Radon die Rede ist, ist in der Regel das Isotop Radon-222 gemeint, das beim Zerfall von Uran entsteht. Der Begriff Thoron weist auf die Herkunft des Radon -220 aus dem Zerfall von Thorium hin. Anders als bei Radon-222 , dessen Vorkommen in Wohnräumen und dessen gesundheitlichen Wirkungen gut erforscht sind, sind beim Thoron aber weitere Untersuchungen erforderlich, um seine gesundheitliche Bedeutung sicher bewerten zu können. Radon und Thoron in Wohnungen Ein Radonproblem entsteht hauptsächlich dann, wenn aus dem Erdboden unter einem Gebäude viel Radon in die bewohnten Räume eindringt. Es ist bekannt, dass erhöhte Radon -Konzentrationen in Wohnräumen das Lungenkrebsrisiko erhöhen . Auch Thoron entsteht im Erdboden. Mit einer Halbwertszeit von nur 55 Sekunden zerfällt es aber auf dem Weg aus dem Erdboden in ein Gebäude fast vollständig. Damit ist der Untergrund – anders als bei Radon – keine nennenswerte Quelle für Thoron in Innenräumen. Erhöhte Thoronwerte sind nur möglich, wenn es in größerem Umfang aus den verwendeten Baustoffen direkt an einen Wohnraum abgegeben wird. Die Vermutung, dass ungebrannter Lehm eine gesundheitlich relevante Strahlenbelastung in Gebäuden verursachen könnte, geht auf Untersuchungen in traditionellen chinesischen Lehmbehausungen zurück. Lehm enthält zwar nicht grundsätzlich mehr Uran oder Thorium als andere Baustoffe. Er hat aber eine größere Oberfläche, weil er sehr feinkörnig ist. Über diese größere Oberfläche kann mehr Radon und Thoron in die Raumluft gelangen als zum Beispiel bei gebrannten Lehmziegeln. Beim Brennen der Ziegel verschmelzen die Körner und die Oberfläche wird kleiner. Deswegen geben gebrannte Lehmziegel keine relevanten Mengen an Radon und Thoron ab. Wie viel Radon und Thoron im Lehm überhaupt entsteht, hängt von dessen Uran - und Thoriumgehalt ab. Dieser schwankt je nach Herkunftsregion des Lehms deutlich. Als Baumaterial besitzt Lehm eine natürliche Dichtheit, nimmt Luftfeuchtigkeit auf und speichert Wärme - diese Eigenschaften schaffen ein angenehmes Raumklima, welches oftmals keine verstärkte Lüftung der Innenräume erfordert. Um jedoch die Radon- und Thoron-Konzentration zu senken, sollte vorsichtshalber darauf geachtet werden, bei ungebranntem Lehm als Baumaterial betroffene Räume regelmäßig zu lüften. Weitere Forschungen notwendig Dass Radon in Gebäuden Lungenkrebs hervorrufen kann, ist aus umfassenden wissenschaftlichen Studien bekannt. Das Risiko zu erkranken, hängt dabei von der Radon -Konzentration ab. Grundsätzlich besitzt auch Thoron das Potenzial, Lungenkrebs hervorzurufen. Ab welcher Thoronkonzentration in der Raumluft das Risiko erkennbar steigt, ist aber weit weniger gut erforscht als bei Radon . Auch zum Vorkommen von Thoron in Wohnungen in Deutschland gibt es – verglichen mit dem Radon – erst wenige Untersuchungen. Um die gesundheitliche Bedeutung von Thoron in Baumaterialien in Deutschland sicher bewerten zu können, sind deshalb weitere Untersuchungen notwendig. Nachweis von Thoron ist schwierig Das Bundesamt für Strahlenschutz hat bereits wichtige Anstöße gegeben, um qualitätsgesicherte Thoron-Messungen zu ermöglichen: Im Rahmen der Ressortforschung hat es den Aufbau einer Kalibriereinrichtung für Thoron-Messgeräte bei der Physikalisch-Technischen Bundesanstalt ( PTB ) sowie eine Studie des Helmholtz-Zentrums München zur Eignung von Thoron-Messgeräten für nationale Erhebungen initiiert und fachlich betreut. Das BfS selbst bietet im akkreditierten Radon-Kalibrierlaboratorium Werkskalibrationen von Thoron-Messgeräten an. Hierbei werden Messgeräte genau bekannten Thoron-Konzentrationen ausgesetzt, um die Richtigkeit der Messergebnisse sicherstellen zu können. Dies ist eine Grundvoraussetzung dafür, die technisch sehr anspruchsvollen Thoron-Messungen qualitätsgesichert durchzuführen. Medien zum Thema Mehr aus der Mediathek Radioaktivität in der Umwelt In Broschüren, Videos und Grafiken informiert das BfS über radioaktive Stoffe im Boden, in der Nahrung und in der Luft. Stand: 22.04.2024

Eine vergleichende Studie von individuellen Monitortechniken für Radon, Thoron und ihren Zerfallprodukten zur Dosisabschätzung in verschiedenen Innenräumen

Das Projekt "Eine vergleichende Studie von individuellen Monitortechniken für Radon, Thoron und ihren Zerfallprodukten zur Dosisabschätzung in verschiedenen Innenräumen" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH) - Institut für Strahlenschutz (ISS).Ziel des gemeinsamen Programms ist die Abschätzung von Dosiswerten nach Inhalation von Radon und Thoron. Dazu sollen unterschiedliche Szenarien untersucht werden unter Verwendung von verschiedenen Überwachungstechniken, die am BARC und am ISS entwickelt wurden. Die Größenverteilungen von inhalierten Teilchen soll gemessen werden, sowie der angelagerte und nichtangelagerte Anteil der Folgeprodukte aus dem Radon- und Thoron-Zerfall. Parallel dazu sollen auch Innenraummodelle zur Radon- und Thoronkonzentration in der Luft entwickelt und angewendet werden. Die Ergebnisse des Programms werden unser Verständnis der Radon- und Thoronverteilung in Innenräumen verbessern und zu einer verbesserten Dosisabschätzung der Bewohner führen.

Glossar der Radon-Informationsstelle Rheinland-Pfalz

Hier erhalten Sie eine Kurzbeschreibung über die wichtigsten Begriffe: Aerosol: Fein verteilte flüssige (Nebel) oder feste Stoffe (Stäube, Rauch) in der Luft. Die Aerosole sind so leicht, dass sie in der Luft in der Schwebe bleiben. Werden Aerosole eingeatmet, so können sie in den Bronchien abgelagert werden. Arbeitsplätze: Gemäß § 5 Nr. 4 StrlSchG ist ein Arbeitsplatz jeder Ort, an dem sich eine Arbeitskraft während ihrer Berufsausübung regelmäßig oder wiederholt aufhält. Aufenthaltsräume: Ein Aufenthaltsraum ist ein Innenraum, der zum nicht nur vorübergehenden Aufenthalt von Einzelpersonen der Bevölkerung bestimmt ist, zum Beispiel in einer Schule, einem Krankenhaus, einem Kindergarten oder zum Wohnen (§ 5 Nr. 5 StrlschG). Becquerel: Das Becquerel (Kurzzeichen: Bq) ist die Maßeinheit der " Aktivität " eines radioaktiven Stoffes und gibt an, wie viele Kernzerfälle pro Sekunde stattfinden.“ Exposition: Exposition ist die Einwirkung ionisierender Strahlung auf den menschlichen Körper durch Strahlungsquellen außerhalb des Körpers (äußere Exposition) und innerhalb des Körpers (innere Exposition) oder das Ausmaß dieser Einwirkung (§ 2 Abs. 2 StrlSchG). Folgeprodukt: Zerfallsprodukt eines radioaktiven Stoffes, das selbst radioaktiv ist. Gleichgewichtsfaktor: Im Idealzustand ist die Aktivitätskonzentration der Radonfolgeprodukte genauso hoch wie die des Radons. Da sich die Folgeprodukte als Schwermetalle jedoch aus der Luft abscheiden, ist ihre Konzentration in der Realität kleiner als die des Radons. Das Verhältnis zwischen der Konzentration des Radons und seiner Folgeprodukte wird mit dem Gleichgewichtsfaktor beziffert. Der Wert liegt typisch zwischen 0,2 und 0,6. Innenräume: Innenräume sind umschlossene ortsfeste Räume innerhalb und außerhalb von Gebäuden, in denen sich Menschen aufhalten können, einschließlich Höhlen und Bergwerken (§ 5 Nr. 17 StrlSchG). Ionisierende Strahlung: Strahlung, die in Stoffen elektrisch geladene Ionen erzeugen kann. Hierzu gehört die Gamma-Strahlung (kurzwellige elektromagnetische Wellen), Beta-Strahlung (schnelle Elektronen) und Alpha-Strahlung (Heliumkerne). Diese Strahlen werden beispielsweise beim radioaktiven Zerfall ausgesendet. Ionisierende Strahlen schädigen das menschliche Gewebe und können Krebs auslösen. Kernspurdosimeter: Die radioaktiven Zerfälle des Radons und seiner Folgeprodukte hinterlassen in dünnen Kunststoff-Filmen winzige Spuren, die mit speziellen Verfahren sichtbar gemacht werden können. Die Anzahl dieser Spuren ist ein Maß für die Zahl der Zerfälle, die in einem bestimmten Zeitraum auf das Dosimeter eingewirkt haben. Nuklid: Atome eines chemischen Elements, die eine unterschiedliche Zahl von Neutronen besitzen. Nuklide eines Elements haben unterschiedliche Halbwertszeiten. Beispiele von Isotopen sind Radon-219, Radon-220 und Radon-222. Permeabilität: Die Permeabilität beschreibt die Gasdurchlässigkeit des Bodens und wird in m² angegeben. Grobe Sandböden haben eine große Permeabilität, feine Lössböden hingegen eine niedrige. Zudem ist die Gasdurchlässigkeit für trockene Böden höher als für feuchte Böden. Da die Permeabilität einen wesentlichen Einfluss darauf hat, wie leicht Radon aus dem tiefen Boden an die Oberfläche oder in ein Gebäude eindringen kann, geht es in die Berechnung des Radonpotentials ein. Radioaktivität: Eigenschaft bestimmter Atome, sich ohne äußere Einwirkung in andere Atome umzuwandeln. Die dabei frei werdende Energie wird als ionisierende Strahlung abgegeben. Radon: Radon ist ein Edelgas, von dem es keine stabilen, sondern nur radioaktive Isotope gibt. Das wichtigste radioaktive Isotop des Radons ist das Radon-222. Andere natürliche Isotope des Radons wie das Radon-220 oder Radon-219 spielen für den Strahlenschutz nur eine untergeordnete Rolle. Radon-222 hat eine Halbwertszeit von 3,8 Tagen. Eine Radon-Konzentration von 1000 Bq/m³ entspricht übrigens einer massenbezogenen Konzentration von 0,000 000 000 000 175 g/m³! Radon-Folgeprodukte: Die Zerfallsprodukte des Radons – Polonium-218, Blei-214, Wismut-214, Polonium-214 – haben Halbwertszeiten zwischen 26,8 Minuten und 0,168 Sekunden. Wenn Radon in der Luft zerfällt, lagern sich die Radon-Folgeprodukte meist an Aerosole an. Die Radon-Folgeprodukte stellen den größten Teil der Belastung der Lunge dar. Radonkonzentration: Die Radonkonzentration in der Luft im Porenraum des Bodens wird in Kilobecquerel pro Kubikmeter (kBq/m³) Luft angegeben. Die Messwerte wurden in einem Meter Tiefe ermittelt. Hohe Uran- oder Radiumgehalte des Gesteins führen zu hohen Radonkonzentrationen. Zudem können die Bodenfeuchte und die Gaspermeabilität die Radonkonzentration auf unterschiedliche Weise beeinflussen. Ab einer Konzentration von über 100 000 Bq/m³ (100 kBq/m³) muss mit einem Radonpotential über 44 gerechnet werden. Radonpotenzial: Das Radonpotential ist eine physikalische Größe, die sich aus der Radonkonzentration in der Luft im Porenraum des Erdbodens sowie aus der Gasdurchlässigkeit (Permeabilität) dieses Erdbodens zusammensetzt. Das Radonpotential ist eine dimensionslose Größe und hat keine physikalische Einheit. Je höher das Radonpotential ist, desto wahrscheinlicher ist eine Überschreitung des Referenzwerts in Gebäuden. Bei einem Radonpotential von 44 wird erwartet, dass der Referenzwert in Gebäuden dreimal häufiger überschritten wird als im Bundesdurchschnitt.Physikalische Größe, die sich aus der Radonkonzentration in der Luft im Porenraum des Erdbodens sowie aus der Durchlässigkeit (Permeabilität) dieses Erdbodens zusammensetzt. Das Radonpotenzial hat keine physikalische Einheit. Radonvorsorgegebiete: Gebiete, für die erwartet wird, dass die über das Jahr gemittelte Radonkonzentration in der Luft in einer beträchtlichen Zahl von Gebäuden mit Aufenthaltsräumen oder Arbeitsplätzen den Referenzwert für Radon überschreitet (§ 121 Abs. 1 StrlSchG). Dies ist der Fall, wenn auf Grund einer wissenschaftlichen Vorhersage auf mindestens 75 Prozent des Gebiets der Referenzwert in mindestens zehn Prozent der Anzahl der Gebäude überschritten wird (§ 152 Abs. 2 StrlSchV). Referenzwert: Ein Referenzwert ist gemäß § 5 Nr. 29 StrlSchG ein in bestehenden Expositionssituationen festgelegter Wert, der als Maßstab für die Prüfung der Angemessenheit von Maßnahmen dient. Ein Referenzwert ist kein Grenzwert. Zerfallskette: Ist das Zerfallsprodukt nicht stabil, sondern selbst wiederum radioaktiv, so kann eine Kette radioaktiver Zerfälle entstehen. Ein Beispiel hierfür ist die natürliche Zerfallskette des Urans-238, das nach und nach in die folgenden Isotope zerfällt: Thorium-234, Protactinium-234, Uran-234, Thorium-230, Radium-226, Radon-222, Polonium-218, Blei-214, Wismut-214, Polonium-214, Blei-210, Polonium-210 und zuletzt das stabile Blei-206. Zerfallsprodukt: Ein Atom, das durch den radioaktiven Zerfall eines anderen Atoms entsteht.

Radon und Thoron in Altbauten (Fachwerkhäusern)

Das Projekt "Radon und Thoron in Altbauten (Fachwerkhäusern)" wird/wurde gefördert durch: Bayerisches Staatsministerium für Umwelt und Gesundheit. Es wird/wurde ausgeführt durch: Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH) - Institut für Strahlenschutz (ISS).

Radonprävention und -sanierung (RADPAR)

Das Projekt "Radonprävention und -sanierung (RADPAR)" wird/wurde gefördert durch: Executive Agency for Health and Consumers (EAHC) / Kommission der Europäischen Gemeinschaften Brüssel. Es wird/wurde ausgeführt durch: Österreichische Agentur für Gesundheit und Ernährungssicherheit GmbH (AGES), Bereich Landwirtschaft.Das Ziel des EU-Projekts RADPAR (Radon Prevention and Remediation) war es, EU Mitgliedsstaaten bei der Verminderung des durch Radon in Wohnungen verursachten Lungenkrebsrisikos zu unterstützen. Innerhalb des Projekts wurde für 27 europäische Staaten eine Schätzung der Anzahl der Todesfälle in der Allgemeinbevölkerung, die auf Radon in Wohnungen pro Jahr zurückgeführt werden können, vorgenommen. Es wurden vorhandene Radonpräventions- und sanierungsstrategien evaluiert und verbessert. Risikokommunikationsstrategien und Zugänge zu verschiedenen Zielgruppen wurden entwickelt. Messprotokolle für Radonquellen und Technologien zur Radonkontrolle wurden standardisiert. Die Kosten-Effektivität von existierenden und möglichen Strategien zur Radonkontrolle und -sanierung wurden bewertet. Die Effektivität von Strategien zur Radonkontrolle wurde im Hinblick auf Design, Gebrauch von Trainingskursen zur Radonmessung, -prävention und -sanierung sowie Kosten-Effektivitätsanalysen bewertet. Mögliche Konflikte zwischen Energieersparnis in Gebäuden und der Reduktion der Radonbelastung wurden bewertet.

Messung des Radons und seiner Folgeprodukte in Wohnraeumen und im Freien und Abschaetzung der daraus resultierenden Strahlenexposition

Das Projekt "Messung des Radons und seiner Folgeprodukte in Wohnraeumen und im Freien und Abschaetzung der daraus resultierenden Strahlenexposition" wird/wurde gefördert durch: Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit,Bundesamt für Strahlenschutz. Es wird/wurde ausgeführt durch: Universität des Saarlandes.Das Vorhaben dient der Messung der Aktivitaetskonzentrationen des Radons und seiner kurzlebigen Folgeprodukte und des Gleichgewichtsfaktors in Wohnraeumen und im Freien sowie der Abschaetzung der daraus resultierenden Strahlenexposition. In diesem Zusammenhang kam der Erforschung der Radondiffusion durch poroese Materialien ein uebergeordneter Stellenwert zu. Das messtechnische Prinzip zur Bestimmung des Diffusionskoeffizienten des Radons im Erdboden unterscheidet sich nicht wesentlich von der Messung des Diffusionskoeffizienten an Baustoffproben im Labor. Bei der Aufzeichnung von Konzentrationen und Exhalationsraten des Radons zeigte sich, dass die Radonbewegung durch den Erdboden ganz entscheidend von dessen aktuellem Wassergehalt abhaengt. Je nach Wetterlage sind enorme Schwankungen der Radonkonzentration und der Diffusionskeffizienten nahe der Bodenoberflaeche zu erkennen. Erst ab einer Tiefe von etwa 1 m konnten 'stabile Verhaeltnisse' gemessen werden. Eine Beurteilung des Radonpotentials eines Bodens sollte daher nicht allein auf Messungen an der Bodenoberflaeche gestuetzt werden. Zum Auffinden von Radonanomalien im Boden wurde ein Verfahren entwickelt. Das Verfahren ist eine Modifizierung des zu Langzeitmessungen der Radonkonzentration in Haeusern oder in der Atmosphaere benutzten Kernspurfolienverfahrens. Die Empfindlichkeit der Kernspurfolien erlaubt Expositionszeiten von wenigen Stunden bis zu mehreren Tagen. Zur flaechendeckenden Radonmessung koennen diese passiven Radonsonden gleichzeitig, und das ist der entscheidende Vorteil dieses Verfahrens, exponiert werden. Pro Tag koennen ohne weiteres einige hundert Messpunkte angelegt werden. Durch gleichzeitiges Aufnehmen eines vertikalen Konzentrationsprofiles kamm man von den oberflaechennahen Radonwerten auf das Radonpotential in der Tiefe, zB in der ueblichen Tiefe von Hausfundamenten schliessen. Mit dem beschriebenen Verfahren wurden einige Bodenareale im Hunsrueck und im Saarland untersucht. Langzeituntersuchungen des Gleichgewichtsfaktors in der Luft wurden nahe der ehemaligen Uranerzgrube bei Ellweiler durchgefuehrt. Die Untersuchungen ueber die Radondiffusion durch Baustoffe und Isolationsmaterialien wurden fortgefuehrt. Die Ergebnisse der Diffusionsmessungen zeigen folgende Tendenz: Betone koennen ab einer Dicke von 200 mm und Kunststoffolien meist schon ab einer Dicke von 2 mm als radondicht angesehen werden. Zur kontinuierlichen Messung von Radon und Thoron wurde auf der Basis des Verfahrens der elektrostatischen Abscheidung eine Radonkalibrierkammer konstruiert und gebaut.

A procedure to remove natural radioactive substances from drinking water (TENAWA) (NFS2 Nuclear Fission Safety (Euratom FP4)

Das Projekt "A procedure to remove natural radioactive substances from drinking water (TENAWA) (NFS2 Nuclear Fission Safety (Euratom FP4)" wird/wurde gefördert durch: Euratom European Atomic Energy Community , Europäische Atomgemeinschaft. Es wird/wurde ausgeführt durch: Universität für Bodenkultur Wien, Institut für Wasservorsorge, Gewässerökologie und Abfallwirtschaft, Abteilung für Siedlungswasserbau, Industriewasserwirtschaft und Gewässerschutz.The overall objective of this project is to accumulate information, to test and improve methods and equipments currently available for removing natural radionuclides (Radon-222, Radium, Uranium, Polonium-210) from drinking water. The objectives are in detail: - to give recommendations on the most suitable methods to remove radionuclides from drinking water with different water qualities - to test, improve and modify commercially available equipments for their ability to remove radionuclides - to find new materials, absorbers, membranes to be applied in effective removal of radionuclides - to give guidelines for the treatment and disposal of radioactive waste produced in water treatment The methods are: - literature survey - laboratory tests - field tests. Prime Contractor: Finnish Centre for Radiation and Nuclear Safety, Research Department, Natural Radiation Laboratory; Helsinki; Finland.

1 2