API src

Found 603 results.

Related terms

Errichtung einer Anlage zur Schwefelverbrennung für die CO2-freie Herstellung von Prozessdampf und die optimale Versorgung mit Rohstoffen

Die Chemiewerk Bad Köstritz GmbH ist ein mittelständischer Hersteller von anorganischen Spezialchemikalien. Für die chemischen Herstellungsprozesse im Werk wird Dampf benötigt, für dessen Erzeugung Erdgas verbrannt wird. Zur Herstellung von Thiosulfaten und Sulfiten kommen flüssiges Schwefeldioxid und Schwefel zum Einsatz. Um Kieselsole und -gele herzustellen, wird konzentrierte Schwefelsäure verwendet. Bisher werden die benötigten Rohstoffe von externen Lieferanten bezogen und am Standort gelagert. Gegenstand des Vorhabens ist die Umsetzung eines innovativen Verfahrenskonzepts, mit welchem auf Basis von flüssigem Schwefel die weiteren benötigten Rohstoffe nach Bedarf am Standort hergestellt werden können. Im Zentrum steht die Errichtung einer Anlage zur Verbrennung von flüssigem Schwefel, der als Abprodukt bei Entschwefelungsprozessen in Raffinerien oder Kraftwerken anfällt. Das bei der Verbrennung entstehende Schwefeldioxid (SO 2 ) wird mit einem Abhitzekessel abgekühlt. Ein Teil davon wird im Anschluss mit Hilfe einer Adsorptionskälteanlage verflüssigt. Der andere Teil des SO 2 wird in einem Konverter mittels eines Katalysators zu Schwefeltrioxid (SO 3 ) oxidiert und anschließend in einem Adsorber in konzentrierte Schwefelsäure umgewandelt, das Verhältnis SO 2 zu H 2 SO 4 (Schwefelsäure) kann dem Bedarf der Produktion flexibel angepasst werden. Mit der bei den Prozessen entstehenden Wärme wird Dampf erzeugt, welcher für den Antrieb des Gebläses für die Verbrennungsluft, zum Betrieb der Adsorptionskälteanlage und mittels einer Turbine zur Stromerzeugung genutzt wird. Der restliche Dampf wird in das vorhandene Dampfnetz des Werks eingespeist. Der erzeugte Strom wird zum Betrieb der Anlage und darüber hinaus für den Eigenbedarf am Standort verwendet. Das innovative Verfahrenskonzept geht deutlich über den Stand der Technik in der Chemiebranche hinaus und hat Modellcharakter. Es zeigt auf, wie an einem Standort aus einem einzigen Rohstoff verschiedene Produkte wirtschaftlich, bedarfsgerecht und gleichzeitig umweltfreundlich hergestellt werden können. Die Reduzierung der Anzahl der Rohstofftransporte trägt zur Umweltentlastung bei. Das Verfahren erzeugt keine Abfälle und Abwässer. Mit der konsequenten Abwärmenutzung zur Dampferzeugung können ca. 50 Prozent des Grundbedarfs an Dampf des Werks gedeckt und dadurch etwa die Hälfte des bisher zur Dampferzeugung genutzten Erdgases eingespart werden. Gegenüber dem gegenwärtigen Produktionsverfahren können insgesamt ca. 3.400 Tonnen CO 2 -Emissionen jährlich vermieden werden, was einer Minderung um etwa 33 Prozent entspricht. Branche: Chemische und pharmazeutische Erzeugnisse, Gummi- und Kunststoffwaren Umweltbereich: Ressourcen Fördernehmer: Chemiewerk Bad Köstritz GmbH Bundesland: Thüringen Laufzeit: seit 2019 Status: Laufend

Haushaltsgeräteservice

Die industrielle Nutzung des Grundstücks ist seit 1911 als Betriebsfläche zur Herstellung von nummerierten Spezial-Kontrolldruckerzeugnissen (Paragon Kassenblock AG) und Lager für Beleuchtungsköpern (R. Frister AG) dokumentiert. Von 1940 bis 1945 erfolgte die Produktion von Farben durch die Lackfabrik Dr. Werner. Von 1945 bis 1995 diente der Standort der Endmontage und Reparatur von Haushaltsgeräten (VEB Haushaltsgeräteservice später Haushaltsgeräte-Service GmbH). Danach (bis etwa 2006) wurden die Flächen an Unternehmen des Klein- und Mittelgewerbes vermietet. Aus der Nutzung des Grundstücks zur Herstellung und Verarbeitung von Lackfarben wurde ein unterirdisches Tanklager mit ca. 20 Einzelbehältern betrieben. Zur Herstellung der Produkte wurden auf der Fläche die aromatischen Kohlenwasserstoffe Benzol, Toluol und Xylol, Naphthalin, Petroleum, Schwerbenzin, Vergaserkraftstoffe, Terpentinöl sowie diverse alkoholische Verbindungen eingesetzt, gelagert und umgeschlagen. In Vorbereitung einer Erweiterung des Gebäudebestandes an der Freifläche zur Fuststraße erfolgte 1980 die Bergung des Tanklagers, wodurch es zu nachweisbaren Schadstoffaustritten kam. Es ist davon auszugehen, dass es auch durch den unsachgemäßen Umgang mit den für die Lackfarbenproduktion verwendeten Gefahrstoffen zu Schadstoffeinträgen in den Untergrund kam. Als Folge der Schadstoffeinträge in den Boden wurden durch die nachstehend beschriebenen Erkundungen massive Kontaminationen des Bodens durch BTEX (untergeordnet PAK und MKW) nachgewiesen. Die höchsten Belastungen wurden mit über 5.000 mg/kg BTEX bei 6 – 9 m unter Geländeoberkante (uGOK) unterhalb des ehem. Druckereigebäudes angetroffen. Die besondere Gefährdungssituation ergibt sich aus der Lage des Standortes innerhalb der Trinkwasserschutzzone II des Wasserwerks Wuhlheide . In einer frühen Phase der Altlastensanierung konzentrierten sich die In einer frühen Phase der Altlastensanierung konzentrierten sich die Erkundungen auf die Eingrenzung der Schadensherde für die Planung und Umsetzung von hydraulischen Sicherungsmaßnahmen zur Verhinderung der Verlagerung der Kontamination zu den Fassungen des Wasserwerks Wuhlheide (Abstromsicherung). Mit fortschreitender Bearbeitungsdauer zielten die Arbeiten zunehmend auf die Vorbereitungen zur Sanierung der Belastungen in den Eintragsbereichen/ Schadensherden. Zur Bewertung und Beobachtung der Grundwasserbeschaffenheit sowie der Steuerung der hydraulischen Sicherungs-/ Sanierungsmaßnahmen wurde zwischen 1995 und 2004 ein Netz von Messpegeln geschaffen, welches regelmäßig auf die standortspezifischen Parameter hin analysiert wurde. In 2005/2006 wurde das Messnetz auf der Basis der Ergebnisse einer teufenorientierten Beprobung des Grundwassers erweitert. Im Zuge der Baufeldfreimachung zur Bodensanierung ist baubedingt eine Reduzierung des Bestandes erfolgt. Derzeit liegt der Fokus des Grundwassermonitorings als Nachsorgemaßnahme auf der Überwachung der Grundwasserqualität an der Grundstücksgrenze im unmittelbaren Zustrom zu den Förderbrunnen des Wasserwerks Wuhlheide. Seit 1995 wurde zum Schutz der nahe gelegenen Förderbrunnen des Wasserwerks eine hydraulische Sicherungs-/ Sanierungsmaßnahme durchgeführt. Die Technologie der Reinigung des geförderten Grundwassers wurde im Zeitraum von 2002 bis 2006 entsprechend dem Stand der Technik, der Schadstoffzusammensetzung sowie anderen speziellen Problematiken mehrfach angepasst. Zur Optimierung des Schadstoffaustrags wurde die Brunnenanzahl erhöht und ein hydraulischer Kreislauf für eine bessere Durchspülung des Aquifers erzeugt. Im Ergebnis der durchgeführten Sanierungsuntersuchungen zeigte sich, dass allein durch hydraulische Maßnahmen keine ausreichende Schadstoffreduzierung erzielt werden konnte. Daher wurde die Beseitigung der Schadstoffquellen mittels Bodenaustausch festgelegt, die 2007/2008 begonnen und 2011 abgeschlossen wurde. Einen chronologischen Abriss der einzelnen Sanierungsetappen zeigt die folgende Abbildung. 1995 – 2002: Sicherungs-/Sanierungsmaßnahme durch Förderung aus 2 Sicherungsbrunnen an derabstromigen Grundstücksgrenze und später zusätzlich aus 2 Sanierungsbrunnen in den damals bekannten Hauptschadensbereichen. 06/2002 – 12/2006: Umstellung der Reinigungstechnologie auf einen biologischen Wirbelschichtreaktor als Hauptreinigungsstufe, in dem Aktivkohle als Trägermaterial für Biomasse umlaufartig oszilliert, mit Erhöhung der Förderrate. Abschließende Adsorption mittels Wasseraktivkohle. 01/2007 – 08/2008: Außerbetriebnahme eines Teils der Brunnen im Hauptschadensbereich infolge der vorbereitenden Arbeiten zur Bodensanierung. 09/2008 – 12/2008: Abschluss der hydraulischen Sanierung im Bereich der Bodensanierung. Reinigung des abgepumpten Grundwassers über einstufige Stripanlage mit Abluftadsorption mit nachgeschalteten Wasseraktivkohlefiltern. 2009 – 2012: Sukzessive Außerbetriebnahme der Förderbrunnen (hydraulische Sicherung) nach dem Erreichen des Sanierungszielwertes von 20 µg/L BTEX. Im Jahr 2007 wurde mit dem Beginn des Teilabrisses der vorhandenen Gebäudesubstanz sowie einem Industrieschornstein aus Betonfertigteilen (einschl. vorlaufender Entkernung und nachlaufender Tiefenenttrümmerung) die Bodensanierung eingeleitet. In einem 1. Bauabschnitt (2008 – 2009) wurde der Bodenaustausch in der gesättigten Zone auf einer Fläche von ca. 2.100 m² in dem zentralen Grundstücksbereich bis in eine Tiefe von 11 m uGOK mittels Rüttelsenkkästen (Wabenverfahren) durchgeführt. Der vorlaufende Bodenaushub zur Beseitigung gering belasteter Bodenhorizonte bis ca. 0,5 m oberhalb des anstehenden Grundwasseranschnittes wurde mit einer Trägerbohlwand gesichert. In einem Teilbereich der Sanierungsfläche wurde dem sauberen Boden ein sauerstoffhaltiges Substrat beigefügt, das durch die Schaffung eines oxidativen Milieus zu einer Verringerung der verbliebenen Restbelastungen durch mikrobielle Abbauprozesse im Grundwasser beitragen sollte. In einem 2. Bauabschnitt (2010) erfolgte der Bodenaustausch im nördlichen Randbereich des Standortes mittels Großlochbohrungen bis zu einer Tiefe von 9 m uGOK an 757 Bohransatzpunkten (DN 1200). Nachfolgend finden sich die mit der Bodensanierung angefallenen Entsorgungsmengen zusammengefasst: Zur weiteren Überwachung des Sanierungserfolgs und zum Schutz der nahe gelegenen Fassungen des Wasserwerks Wuhlheide ist die Fortsetzung des Grundwassermonitorings mit viertel- oder halbjährlichen Beprobungskampagnen als Nachsorgemaßnahme vorgesehen. Die Beobachtung von Verlagerungen aus verbliebenen lokalen Belastungsschwerpunkten erfolgt mittels Modellrechnungen (Stofftransportmodellierungen) und bei Bedarf durch Errichtung zusätzlicher Grundwassermessstellen. Die Gesamtkosten aller Maßnahmen belaufen sich bis Ende 2018 auf ca. 8,77 Mio. €. Bedingt durch die Lage des Standortes in der Trinkwasserschutzzone II des Wasserwerks Wuhlheide, die eine Neubebauung der sanierten Flächen derzeit ausschließt, ist die zukünftige Nutzung noch offen.

Einzelmessungen

Einzelmessungen kommen zur Anwendung, wenn die erforderlichen Massenströme unterschritten werden oder für den zu überwachenden Schadstoff keine kontinuierlich arbeitende automatische Messeinrichtung an der Anlage zur Verfügung steht. Die Einzelmessungen dienen zur zeitlich begrenzten stichprobenartigen Feststellung des Emissionsverhaltens der Anlage und sollen im Betriebszustand der höchsten von der Anlage ausgehenden Schadstoffemission durchgeführt werden. Einzelmessungen müssen i. d. R. im Abstand von drei Jahren durchgeführt werden. Als Probenahmezeit sind in der Regel 30 min vorgesehen. Es werden drei bis sechs Proben gezogen. Ein wesentlicher Vorteil gegenüber der Emissionsüberwachung mit Hilfe von in der Abgasleitung der zu überwachenden Anlage fest eingebauten kontinuierlich arbeitenden automatischen Messeinrichtungen besteht im geringeren messtechnischen Aufwand. Nachteilig ist die geringere, weil nur stichprobenartige Überwachungsdichte. Prinzipiell wird bei Einzelmessungen dem Abgas ein repräsentativer Teil mit Hilfe einer Entnahmesonde entnommen. Das über die Entnahmesonde entnommene Gas wird bei den sogenannten manuellen Verfahren über ein Medium, das den zu bestimmenden Schadstoff quantitativ zurückhält, geleitet. Je nach Schadstoff kann dieses Medium z. B. ein Filter, ein flüssiges oder ein festes Adsorptionsmittel  sein. Das Medium muss nach der Probenahme aufgearbeitet und die Menge der enthaltenen, zu bestimmenden Stoffe im Labor analysiert werden. Ein Messwert für die Emissionskonzentration steht also nicht unmittelbar vor Ort zur Verfügung. Einige wenige Schadstoffkomponenten können vor Ort mit mobilen automatischen Messeinrichtungen direkt gemessen werden (sogenannte kontinuierliche Messverfahren). Bei den Einzelmessungen werden neben den eigentlichen Schadstoffkomponenten die Abgasrandbedingungen, wie Abgasgeschwindigkeit, Temperatur, Druck, Feuchtegehalt und ggf. Sauerstoffgehalt, des Abgases der Emissionsquelle mit bestimmt. Mit diesen Messparametern werden Abgasvolumenstrom und Emissionsmassenstrom berechnet und Umrechnungen auf Normbedingungen bzw. einen vorgegebenen Sauerstoffgehalt des Abgases vorgenommen. Damit repräsentative und untereinander vergleichbare Ergebnisse gewonnen werden, müssen wichtige Voraussetzungen erfüllt sein: Durchführung der Messung durch kompetente Messinstitute, eine Messstrecke und ein Messplatz, die die Entnahme einer repräsentativen Probe erlauben, sind an geeigneter Stelle in der Abgasleitung vorhanden, die Messaufgabe und ein Messplan sind vor Beginn der Messungen verfügbar, eine der Messaufgabe angemessene Probenahmestrategie wird angewandt, die Schadstoffkomponenten und Bezugsgrößen werden mit Messverfahren ermittelt, die dem Stand der Messtechnik entsprechen und es wird ein Bericht über die Ergebnisse der Messungen erstellt, der alle relevanten Informationen enthält. Grundlegende Anforderungen an Messstrecken und Messplätze, die Messaufgabe, den Messplan und den Messbericht bei Einzelmessungen sind in der DIN EN 15259 enthalten.

Genehmigungsverfahren nach § 4 BImSchG für die Errichtung und den Betrieb einer neuen Klärschlamm-Verbrennungsanlage durch die Münchner Stadtentwässerung am Standort Klärwerk Gut Großlappen, Freisinger Landstraße 187, 80939 München

Die Münchner Stadtentwässerung, Friedenstraße 40, 81671 München betreibt am Standort Klärwerk Gut Großlappen, Freisinger Landstraße 187, 80939 München, Fl.Nr. 275 der Gemarkung Freimann eine aus zwei Verbrennungslinien bestehende Klärschlamm-Verbrennungsanlage mit einer genehmigten Durchsatzleistung von 2 x 3 t Trockenrückstand (TR) / Stunde; von den 2 Verbrennungslinien wurde bisher im Regelfall jeweils nur eine Linie betrieben, da ein Teil des Klärschlammes im Müllheizkraftwerk München-Nord mitverbrannt wurde. Die Münchner Stadtentwässerung hat nun die immissionsschutzrechtliche Genehmigung nach § 4 des Bundes-Immissionsschutzgesetzes (BImSchG) für die Errichtung und den Betrieb einer neuen Klärschlamm-Verbrennungsanlage am Standort Klärwerk Gut Großlappen, Freisinger Landstraße 187, 80939 München, Fl.Nr. 275 der Gemarkung Freimann beantragt, die die alte Klärschlamm-Verbrennungsanlage ersetzen soll und den gesamten Klärschlamm (AVV-Nr. 19 08 05) der Landeshauptstadt München und der bisher schon angeschlossenen Umlandgemeinden entsorgen soll. Im Wesentlichen sind die Errichtung und der Betrieb der folgenden Anlagenteile bzw. Nebeneinrichtungen vorgesehen: - Vorgeschaltete Entwässerung des Klärschlamms mittels 6 Zentrifugen (je 3 für die Betriebslinie und die Reservelinie) von durchschnittlich 2,5 - 3 % TR auf ca. 24 % TR einschließlich zweier Faulschlammpufferbehälter mit je 150 m³, - Lagerung von entwässertem Klärschlamm in einem Klärschlammbunker mit rund 8.200 m³ Fassungsvermögen sowie in einem 350 m³ großen Anlieferbunker für Anlieferungen vom Klärwerk Gut Marienhof, - Trocknung des entwässerten Klärschlamms mittels dampfbeheizter Trockner auf ca. 42 % TR (je 2 Trockner für die Betriebslinie und die Reservelinie), - Kondensation der bei der Trocknung entstehenden Brüden (abgedampftes Wasser) und Zuführung der kondensierbaren Brüden zur Zentratbehandlung des Klärwerks bzw. der nicht kondensierbaren Brüden zur Verbrennung, - Verbrennung des Klärschlamms in einer aus zwei redundanten Verbrennungslinien bestehenden Wirbelschichtfeuerung, bestehend aus Hauptfeuerung für Klärschlamm, Zünd- und Stützfeuerung mit Heizöl EL bzw. Faulgas, SNCR-Anlage (se-lektive nichtkatalytische Reduktion) zur Stickstoffoxidminderung mittels Harnstoff, Verbrennungsluftsystem, Bettascheaustrag, mit einer Durchsatzleistung von 2 x 4,8 t Trockenrückstand (TR) / Stunde (eine Betriebslinie und eine Reservelinie) und einer Feuerungswärmeleistung von jeweils 13,3 MW, einem Durchsatz von insgesamt rund 40.000 t TR / Jahr und 8.760 Betriebsstunden / Jahr, - Abgasreinigung in zwei redundanten Linien (eine Betriebslinie und eine Reservelinie) bestehend jeweils aus Elektrofilter, Sprühtrockner, Reaktionsstrecke, Gewebefilter, Vor- und Hauptwäscher, Saugzug, Abgasreinigungsabschlämmung und Ableitung der Abgase über je einen 40 m hohen Schornstein, - Wasser/Dampf-System und Stromerzeugung bestehend aus je einem Kessel (Schutzverdampfer, Verdampfer, Überhitzer 1 und 2, Economizer, Dampftrommel), Dampfturbine mit Ölversorgungsanlage, Getriebe und Generator, Luftkondensator, Speisewassersystem, Transformatoranlage, - Silos und Behälter für Einsatzstoffe (insb. Harnstoff, Sand, Heizöl, Kalkhydrat, Kalkstein, Adsorbens, Salzsäure, Fäll- und Flockungsmitttel) und Reststoffe (insb. Aschesilo 1 und 2, Reststoffsilo 1 und 2, Grobstoffbehälter für Bettasche, Gipssilo), - Notstromdieselaggregat mit einer Feuerungswärmeleistung von 3,25 MW, einer Betriebszeit von maximal 50 Stunden / Jahr und einem 34,3 m hohen Schornstein, - Nebeneinrichtungen wie Kühlkreislauf, VE-Anlage, Zentralstaubsauger, Druckluftsystem, Probenahmestation, Gebäudeentwässerung, Zwischenspeicherung von überschüssiger Prozesswärme, Betriebswasserversorgung und Bereitstellung von Brauchwasser, - Erstellung der notwendigen baulichen Einrichtungen für die technischen Einrichtungen. Es sind die folgenden Betriebszustände beantragt: Alternative Betriebsfälle für die Inbetriebnahmephase (ersten drei Betriebsjahre): - Vollastbetrieb einer Linie der bestehenden Klärschlamm-Verbrennungsanlage mit 3 t TR / Stunde bei gleichzeitigem Anfahrbetrieb der neuen Klärschlamm-Verbrennungsanlage mit Klärgas / Heizöl (ca. 300 Stunden / Jahr) oder - Volllastbetrieb einer Linie der neuen Klärschlamm-Verbrennungsanlage mit 4,8 t TR / Stunde bei gleichzeitiger Betriebsbereithaltung der bestehenden Klärschlamm-Verbrennungsanlage mit Klärgas / Heizöl (ca. 300 Stunden / Jahr). Dauerbetrieb nach der Inbetriebnahmephase: - Volllastbetrieb einer Linie der neuen Klärschlammverbrennungsanlage (4,8 t TR / Stunde) oder - Volllastbetrieb einer Linie der neuen Klärschlammverbrennungsanlage (4,8 t TR / Stunde) bei gleichzeitiger Stützfeuerung der anderen Linie mit Klärgas / Heizöl (ca. 5 Tage entsprechend 150 Stunden / Jahr). Ein Parallelbetrieb der beiden neuen Verbrennungslinien mit Klärschlamm ist nicht beantragt. Die Münchner Stadtentwässerung hat ferner die beschränkten wasserrechtlichen Erlaubnisse nach § 10 Abs. 1 WHG i.V.m. Art. 15 des Bayerischen Wassergesetzes (BayWG) für folgende Benutzungen im Sinne des § 9 WHG beantragt: - Während der Bauzeit ca. 100.000 m³ Grundwasser mit einer maximalen Förderleistung von 25 l / s zu entnehmen, zutage zu fördern, zutage zu leiten, abzuleiten und zu versickern (Bauwasserhaltung), - die Gründung von Bauteilen im Grundwasser mit einem damit verbundenen Aufstau des Grundwassers von ca. 0,18 m, - Grundwasser insb. im Rahmen dieser Maßnahmen aufzustauen, abzusenken und umzuleiten, - Versickerung von gesammeltem Niederschlagswasser der Flächen der Klärschlammverbrennungsanlage und der Dachflächen des Betriebsgebäudes in das Grundwasser; der zu bebauende Bereich hat eine Fläche von rund 10.266,1 m².

Biogenic amorphous ferric hydroxide as adsorbent for vanadium removal in drinking water production

Vanadium as toxic heavy metal is a drinking water relevant contaminant. However, there is a lack in treatment processes to meet regulatory requirements (e.g. 4 g l-1 in Germany). This study introduces a novel treatment process - the vanadium adsorption onto biogenic amorphous ferric hydroxide (AFH). Basic mechanisms of adsorption onto AFH are described and compared to granular ferric hydroxide (GFH). Adsorption kinetics and pH dependent isotherms in drinking and ultrapure water, parametrization via the empirical Freundlich and Langmuir models, and bond type and strength assessments via sequential extraction are presented. AFH was generated in pilot waterworks in which Fe(II) and oxygen were dosed and subsequently Fe(II) microbiologically oxidized and precipitated in the filter bed. The backwash-water was collected and used for adsorption experiments. Sequential extraction was executed with vanadium loaded AFH produced in the pilot plant. AFH is identified as alternative adsorbent to GFH with similar affinity and capacity. The isotherms cover a concentration range from 10 g l-1 to 4 mg l-1 and the Freundlich model showed a better fit with the experimental data than the Langmuir model. A bidentate mononuclear inner sphere complex is assumed for vanadium adsorption onto AFH, while a bidentate binuclear inner sphere complex is expected for GFH. Sequential extraction showed a strong bond between AFH and vanadium, which was only mobilized by the last extraction step the dissolution of iron particles. A treatment process - adsorption onto biogenic AFH - is suitable for effective vanadium removal and should be further investigated for technical implementation. © 2023 The Author(s).

Pilot-scale vanadium adsorption onto in-situ biogenic amorphous ferric hydroxide

In order to reach 4 (micro)g l-1 vanadium in drinking water adsorption onto in-situ biogenic amorphous ferric hydroxide (AFH) is identified as robust new treatment. The evaluation of its technical feasibility and robustness was the aim of this study. As approach at pilot-scale, Fe(II) and oxygen was dosed before pilot waterworks and Fe(II) subsequently biotically oxidized and precipitated in a filter bed. The so in-situ generated biogenic AFH served as adsorbent for vanadium removal. Results show that an initial vanadium concentration of 30 (micro)g l-1 was removed to below 4 (micro)g l-1, if at least 3 mg l-1 Fe(II) were dosed, resulting in a loading of 8.7 mg V per g AFH. A vanadium concentration of 60 (micro)g l-1 with a dosage of 3 mg l-1 Fe(II) was the upper limit for sufficient removal. Vanadium removal increased with increasing pH in the technical setup, due to faster oxidation of Fe(II) in the supernatant, even though adsorption capacity of AFH decreases with increasing pH. A filtration velocity of 20 m h -1 represented the highest velocity to undercut 4 (micro)g l-1 vanadium in the effluent. By mixing Fe(II) containing groundwater with oxygen and vanadium containing water prior to an adsorption filter with AFH sufficient removal was reached, however dependent on the resulting Fe(II) concentration. © 2023 by the authors

Genehmigungsverfahren nach § 16 BImSchG für die wesentliche Änderung des Biomasseheizkraftwerkes Altenstadt der Heizkraftwerk Altenstadt GmbH & Co. KG, Triebstraße 90, 86972 Altenstadt auf dem Grundstück Fl.Nr. 1964/1 der Gemarkung Altenstadt

Die Heizkraftwerk Altenstadt GmbH und Co. KG, Triebstraße 90, 86972 Altenstadt hat die immissionsschutzrechtliche Genehmigung nach § 16 Abs. 2 BImSchG für die wesentliche Änderung des Biomasseheizkraftwerkes insbesondere durch die Erweiterung der bestehenden Brennstoffpalette um Ersatzbrennstoffe auf dem Grundstück Fl.Nr. 1964/1 der Gemarkung Altenstadt beantragt. Das Vorhaben umfasst im Wesentlichen folgende Anlagenteile, bzw. Maßnahmen: - Erweiterung der bestehenden Brennstoffpalette um den Einsatz von Ersatzbrennstoff, - Errichtung eines neuen Brennstoffbunkers für EBS als Rundbau mit einem Durchmesser von 20 m und insgesamt 4 Andockstationen für die LKW Entladung sowie eines Aufbaus zur Aufnahme der Krananlage, - Errichtung eines zum Bunker gehörenden Gewebefilters zur Abluftreinigung, - Errichtung von Luftkanälen zur Nutzung der Bunkerabluft als Verbrennungsluft für die Wirbelschichtfeuerung, inkl. Kamin zur Ableitung der gereinigten Abluft bei Stillstand der Wirbelschichtfeuerung, - Anpassung / Ergänzung der Fördertechnik, um den EBS aus dem Bunker über Zuteiler, Sichter und Förderschnecken in die Wirbelschichtfeuerung zu fördern, - Erweiterung der Rauchgasreinigungsanlage um folgende Komponenten:  Zyklon zur Abscheidung von Staub aus dem Wirbelschichtfeuerung,  Station zur Zudosierung von Aktivkoks vor die Gewebefilter der Rauchgasreinigung und der Siloabluftreinigung,  Station zur Dosierung eines hochtemperaturstabilen Adsorbens in den Feuerraum der Wirbelschichtfeuerung,  Silo zur Zwischenlagerung von Zyklonasche,  Silo für hochtemperaturstabiles Adsorbens, - Änderung der SNCR-Anlage und der zugehörigen Ammoniakwasserversorgung, - Entfall der Genehmigung für den bisher noch nicht errichteten Reservekessel mit 13,04 MW zur Verfeuerung von Heizöl EL und Erdgas. Das Änderungsvorhaben betrifft eine Anlage nach Nr. 8.1.1.3 des Anhangs 1 zur 4. BImSchV und bedarf eines vereinfachten Verfahrens nach § 16 Abs. 2 Satz 3 i.V.m. § 19 BImSchG. Die Regierung von Oberbayern führt antragsgemäß ein Genehmigungsverfahren nach § 16 Abs. 2 BImSchG durch, da erhebliche nachteilige Auswirkungen durch das Vorhaben nicht zu erwarten sind und eine Umweltverträglichkeitsprüfung nicht erforderlich ist.

CABB GmbH - Wesentliche Änderung der Anlage zur Herstellung von Mono-/Trichloressigsäure (MCE/TCE)

Die CABB GmbH hat beim Landratsamt Augsburg die immissionsschutzrechtliche Genehmigung gemäß § 16 BImSchG für die wesentliche Änderung der Anlage zur Herstellung von Mono-/Trichloressigsäure (MCE/TCE-Anlage) auf ihrem Betriebsgrundstück Flur-Nrn. 2235/56-62 im Industriepark Gersthofen beantragt. Dieser Antrag umfasst folgende Maßnahmen: • die Erweiterung des vorhandenen Essigsäureanhydrid-Lagers durch Installation eines zusätzlichen Lagertanks für Essigsäureanhydrid (50 m³) und eines Adsorbers sowie • verschiedene redaktionelle Änderungen (Nachtrag einer Sumpfpumpe und einer Tauchpumpe sowie Anpassung von Aggregatbezeichnungen). Die Errichtung und der Betrieb einer Anlage zur Herstellung von Mono-/Trichloressigsäure ist der Nummer 4.2 der Anlage 1 zum UVPG zuzuordnen und in Spalte 2 mit „A“ gekennzeichnet. Für das geplante Vorhaben war deshalb im Rahmen des immissionsschutzrechtlichen Genehmigungsverfahrens vom Landratsamt Augsburg eine allgemeine Vorprüfung zur Feststellung der UVP-Pflicht entsprechend den §§ 9 Abs. 2 und 4 i.V.m. § 7 Abs. 1 UVPG durchzuführen.

Comparing fine particulate iron hydroxide adsorbents for the removal of phosphate in a hybrid adsorption/ultrafiltration system

The use of micro-sized iron hydroxide adsorbents in mixed reactors is a promising technique for the removal of inorganic contaminants from wastewater within minutes of contact time. This study focusses on phosphate adsorption onto fine fraction granular ferric hydroxide (nGFH) and iron oxy(hydr)oxide agglomerates (IOAs) in a reactor with submerged ultrafiltration (UF) membrane. The performance of the hybrid adsorption/UF membrane system was evaluated for various adsorbents and phosphate concentrations, residence times and concentrations of co-existing ions. The membrane was not fouled at the experimental conditions used (up to 6.3 g/L adsorbent). Phosphate loadings of 20 and 60 mg P/g Fe (36.1 and 108.3 mol P/mol Fe) were reached for nGFH and IOAs, respectively (C0(P) = 4.5 mg/L, deionized water at pH 8, C(Fe) = 0.6 g/L). A shortened residence time of 15 min in the reactor led to a decrease in final loading of 6 mg/g compared to 30 min residence time (54 mg/g compared to 60 mg/g). An extension to 60 min did not result in higher loadings. An increase in adsorbent (IOA) concentration from 0.1 to 0.3 mg/L resulted in an increase of phosphate removal (27 to 35%). Simultaneously, loadings decreased from 50 to 35 mg/g. The application of the developed process for the treatment of artificial secondary effluent resulted in an increase of 87 and 60% in treated volumes until breakthrough (50%) for nGFH and IOAs, respectively, compared to deionized water. Thus, the combined process of adsorption and particle separation using a submerged membrane can be well adjusted according to water composition, initial pollutant concentrations and desired removals. © 2019 Elsevier B.V. All rights reserved.

Quantification and isotherm modelling of competitive phosphate and silicate adsorption onto micro-sized granular ferric hydroxide

Adsorption onto ferric hydroxide is a known method to reach very low residual phosphate concentrations. Silicate is omnipresent in surface and industrial waters and reduces the adsorption capacity of ferric hydroxides. The present article focusses on the influences of silicate concentration and contact time on the adsorption of phosphate to a micro-sized iron hydroxide adsorbent (nGFH) and fits adsorption data to multi-component adsorption isotherms. In Berlin drinking water (DOC of approx. 4 mg L-1) at pH 7.0, loadings of 24 mg g-1 P (with 3 mg L-1 initial PO43--P) and 17 mg L-1 Si (with 9 mg L-1 initial Si) were reached. In deionized water, phosphate shows a high percentage of reversible bonds to nGFH while silicate adsorption is not reversible probably due to polymerization. Depending on the initial silicate concentration, phosphate loadings are reduced by 27, 33 and 47% (for equilibrium concentrations of 1.5 mg L-1) for 9, 14 and 22 mg L-1 Si respectively. Out of eight tested multi-component adsorption models, the Extended Freundlich Model Isotherm (EFMI) describes the simultaneous adsorption of phosphate and silicate best. Thus, providing the means to predict and control phosphate removal. Longer contact times of the adsorbent with silicate prior to addition of phosphate reduce phosphate adsorption significantly. Compared to 7 days of contact with silicate (c0 = 10 mg L-1) prior to phosphate (c0 = 3 mg L-1) addition, 28 and 56 days reduce the nGFH capacity for phosphate by 21 and 43%, respectively. Quelle: https://pubs.rsc.org

1 2 3 4 559 60 61