API src

Found 3909 results.

Related terms

Processed seismic data of Cruise SO267 ARCHIMEDES I 2018

The cruise SO267 ARCHIMEDES I started on December 11th, 2018 in Suva (Fidji) and ended in Suva on January 26th, 2019. Over half of the world´s presently exploited metal deposits were formed during major episodes of crustal growth related to subduction and microplate tectonics. These processes are observed today along the entire margin of the Western Pacific, where complex microplate mosaics offer unique opportunities to study accretion and the emergence of new continental crust. The focus of SO267 was a series of crustal cross-sections at the outer edge of the Indo- Australian Plate, in the largely uncharted waters of the Kingdom of Tonga. The project, entitled “Arc Rifting, Metallogeny and Microplate Evolution – An Integrated Geodynamic, Magmatic and Hydrothermal Study of the Fonualei Rift System”, was designed to document the geological evolution of an emerging microplate mosaic in the NE Lau Basin, a region with some of the fastest growing crust on Earth, and to better understand the sequence of events that cause arc rifting and related magmatic-hydrothermal activity. Using a coordinated approach of high-resolution 2D seismics, electromagnetics and sampling, ARCHIMEDES I imaged the deep structure of the Fonualei Rift system and adjoining back-arc crust of the Niuafo’ou microplate. The goal was to address a major unsolved question concerning crustal growth in complex arc-backarc systems: at what stage in the structural and thermal evolution of the crust does arc rifting occur and seafloor spreading initiate? Planned operations included large-scale reflection and refraction seismic surveys, and a dense program of gravity, magnetics, heat flow, bathymetric mapping and sidescan imaging using the AUV ABYSS and ship-based multibeam systems. This ambitious program was made possible by a close collaboration between GEOMAR and BGR scientists, bringing together diverse expertise and state-of-the-art technologies. To understand the large-scale tectonic processes, we studied 6 different locations within an area of 300 km x 300 km: i) the southern Fonualei Rift Spreading Center (S-FRSC), ii) the region between the S-FRSC and the Eastern Lau Spreading Center (FRSC-ELSC Transfer Zone), iii) the northern tip of the Eastern Lau Spreading Center (ELSC), iv) the northern tip of the Fonualei Rift system (N-FRSC), v) the Mangatolu Triple Junction (MTJ), and vi) the southward propagating Northeast Lau Spreading centre (NELSC). The combined data represent one of the most comprehensive records of microplate formation from the modern oceans.

UBA bezieht erstes Null-Energie-Haus des Bundes

Ökologischer Modellbau soll sich selbst mit Energie versorgen Das Umweltbundesamt (UBA) bezieht heute sein neues, besonders umweltgerechtes Bürogebäude „Haus 2019“ in Berlin-Marienfelde. Das Ziel für den ökologischen Modellbau, in dem 31 Beschäftigte arbeiten werden, ist besonders hoch gesteckt: Das Haus soll sich als „Null-Energie-Haus“ komplett selbst mit Energie versorgen. Ein detailliertes ⁠ Monitoring ⁠ wird dies verfolgen. „In einem Jahr wissen wir, ob wir das anspruchsvolle Ziel erreicht haben, durch die Nutzung regenerativer Energien und hoher baulicher und technischer Standards eine ausgeglichene Energiebilanz vorzuweisen“, sagte Jochen Flasbarth, Präsident des ⁠ UBA ⁠ auf der Eröffnung. Er ist zuversichtlich, dass nach dem einjährigen Monitoring eine Erfolgsmeldung verkündet werden kann. „Erneuerbare Energien und Energieeffizienz im Gebäudesektor sind zentrale Bausteine der Energiewende. Die Anstrengungen zur Treibhausgassenkung bei Neubauten wie auch im Gebäudebestand müssen in Zukunft deutlich verstärkt werden. Der Neubau des UBA in Berlin-Marienfelde soll dazu ein deutliches Signal setzen“, so Flasbarth. Das Bürogebäude soll mindestens dem neuen EU-Standard für Niedrigstenergiehäuser, der für öffentliche Gebäude ab 2019 gilt, entsprechen. Anfang September beziehen die Wissenschaftlerinnen und Wissenschaftler des UBA nach einer Bauzeit von 20 Monaten die neuen Büroräume im „Haus 2019“ – das erste Null-Energie-Haus des Bundes. Während das Errichten des Gebäudes dank der Holztafelbauweise nur wenige Wochen beanspruchte, stellten der Innenausbau und die technische Gebäudeausrüstung eine besondere Herausforderung dar. Eine wesentliche Voraussetzung für den Erfolg des Projekts war die Qualität der Bauausführung: Die Prüfung der Luftdichtheit der Gebäudehülle unterbietet sogar die höchsten Anforderungen. Gleiches gilt für die Luftqualität in den Büroräumen. Am Gebäude selbst soll in der Bilanz eines Jahres so viel Energie erzeugt werden, wie das Gebäude im Betrieb benötigt. Die Versorgung erfolgt ausschließlich mit regenerativen Energien: durch Photovoltaik und eine Wärmepumpe, die den Energiegehalt des für betriebliche Zwecke geförderten Grundwassers nutzt. Auf der Verbrauchsseite wurden alle technischen Anlagen und Arbeitsmittel nach höchsten Effizienzstandards ausgewählt. Die hohen energetischen Anforderungen sollen aber nicht auf Kosten des Nutzerkomforts gehen. In der ersten Nutzungsphase werden deshalb die Einstellungen der Gebäudeautomation mit den realen Bedingungen und dem konkreten Verhalten der Nutzer und Nutzerinnen abgeglichen. Dadurch soll der Anlagenbetrieb sowohl optimiert als auch nutzergerecht gestaltet und eine ausgeglichene Energiebilanz erreicht werden. Der Betrieb läuft in enger Abstimmung mit der Eigentümerin, der Bundesanstalt für Immobilienaufgaben (⁠ BImA ⁠). Der Name „Haus 2019“ bezieht sich auf die Richtlinie der EU zur Gesamtenergieeffizienz von Gebäuden. Diese sieht einen Standard für Niedrigstenergiegebäude vor, sogenannte Null-Energie-Häuser. Für Gebäude öffentlicher Institutionen gilt dieser Standard bereits ab 2019, für alle anderen ab 2021. Das Umweltbundesamt geht mit gutem Beispiel voran und verlangt für seine Neubauten diesen Standard bereits jetzt.

Effiziente Abwassertechnik senkt CO2-Ausstoß und spart Energie

Mehr Geld für Spitzentechnologie in der Abwasserbehandlung Bei der Abwasserbehandlung lassen sich nach einer Studie des Umweltbundesamtes (UBA) große Mengen an Kohlendioxid einsparen. Durch Energieeffizienz-Maßnahmen sowie durch verbesserte Eigenenergieerzeugung lässt sich der Kohlendioxid-Ausstoß der Abwasserbehandlung in Deutschland um bis zu 40 Prozent senken. „Mit moderner Umwelttechnik können Abwasserbehandlungsanlagen einen wichtigen Beitrag zum Klimaschutz leisten. Höhere Energieeffizienz und eine stärkere Nutzung von Klärgasen sind die Schlüssel für eine klimaverträgliche Abwassertechnologie“, erklärte UBA-Präsident Jochen Flasbarth. Abwasserbehandlungsanlagen sind für 20 Prozent des Energiebedarfs in deutschen Städten und Gemeinden verantwortlich. Sie benötigen fast 4.400 Gigawattstunden (GWh/a) Strom pro Jahr und sind damit der größte Einzelenergieverbraucher vor Schulen, Krankenhäusern und anderen kommunalen Einrichtungen. Anders ausgedrückt: Die Jahresleistung eines modernen Kohlekraftwerks wird nur für das Betreiben von Abwasserbehandlungsanlagen benötigt. Pro Jahr entstehen so rund drei Millionen Tonnen des Klimagases Kohlendioxid. Dieser Energiebedarf lässt sich um über 20 Prozent senken. Darüber hinaus kann die Eigenenergieerzeugung der Abwasseranlagen im Betrieb verdoppelt bis vervierfacht werden. Damit könnten etwa 900 GWh Strom pro Jahr eingespart und somit rund 600.000 Tonnen Kohlendioxid-Emissionen vermieden werden. Zu diesem Ergebnis kommt die Studie „Steigerung der Energieeffizienz auf kommunalen Kläranlagen“ die im Auftrag des ⁠ UBA ⁠ erstellt wurde. Die Studie untersucht die Wechselwirkungen von Energieoptimierung und Anlagenbetrieb und zeigt geeignete Ansatzpunkte zur Energieeffizienzsteigerung auf. Dabei vergleicht sie etablierte Verfahren mit neuer Technik und beschreibt vielversprechende Ansatzpunkte für eine energetische Optimierung besonders bei der Belüftung des Abwassers und bei der Behandlung des Klärschlamms. Zudem weist sie nach: Auch die Energiegewinnung ist für einen energieeffizienten Betrieb der Kläranlagen bedeutend. „Gelingt es, Klärgas besser zu gewinnen und zu verwerten, ließe sich die Stromerzeugung durch kommunale Kläranlagen nahezu verdoppeln. Auch dadurch ließen sich rund 600.000 Tonnen Kohlendioxid pro Jahr einsparen“, so Jochen Flasbarth. Der neue Förderschwerpunkt „Energieeffiziente Abwasseranlagen“ bereichert das Umweltinnovationsprogramm des Bundesumweltministeriums. Gefördert werden innovative Konzepte zur Energieoptimierung und zum Ressourcenschutz in der Abwasserbehandlung. Das fängt an beim Abwassertransport in der Kanalisation und geht über die Behandlung des Abwassers bis hin zur Einleitung in die Gewässer. Weitere Aspekte sind die Abwärmenutzung im Kanalnetz, die Stromeinsparung und Energieerzeugung in Kläranlagen, die Erhöhung der Energieeffizienz sowie die Rückgewinnung von Rohstoffen aus dem Abwasser und dem Klärschlamm.

Umweltrelevanz und Stand der Technik von Tierkrematorien

Die Feuerbestattung für Tiere nimmt aufgrund des steigenden Stellenwerts von Haustieren fortwährend zu. Damit einhergehend gewinnen Tierkrematorien zunehmend an Umweltrelevanz. Im Rahmen des Forschungsprojekts wurden die in Deutschland betriebenen Anlagen erfasst und hinsichtlich des Stands der Technik bewertet. Weiterhin wurden die Genehmigungspraxis sowie Umwelt- und Wirtschaftlichkeitsaspekte des Anlagenbetriebs betrachtet. Darauf aufbauend wurden an sechs Linien Emissionsmessungen für relevante Abgasparameter durchgeführt. Die aus den gewonnenen Erkenntnissen abgeleiteten praxisorientierten Vorschläge stellen sowohl auf Anforderungen zur Emissionsminderung als auch auf Betriebsweisen ab. Veröffentlicht in Texte | 07/2021.

Climate resilient infrastructure systems

In 2021 ⁠ UBA ⁠ commissioned workshops to discuss how research outputs on climate resilient infrastructure systems could be more consistently transferred into practice of infrastructure operation. This paper presents barriers for successful transfer and provides recommendations to overcome them. The target audiences for these recommendations are funding bodies, policy makers, and standardization bodies that can influence the framework conditions under which infrastructure resilience research takes place, research project coordinators and other academic/researcher institutions who design research projects, and practitioners who design and manage (critical) infrastructure systems. Veröffentlicht in Climate Change | 51/2022.

Fermenter\Bio-EtOH-ZR-iLUC25% (Acker)-BR-2030/en

Fermenter für Bio-EtOH uas Zuckerrohr in Brasilien (Sao-Paulo-Region), Daten für energieautarkes System mit Prozesswärme + Hilfsstrom aus Bagasse, alles Daten aus #1, Kosten nach #2 Data from Macedo 2004: ethanol yield 86 l/t cane (best case: 92 l/t, i.e. 22,2% using yield of 1,96 GJ/t cane) NCV ethanol 26,8 MJ/kg i.e. 21,3 MJ/l for density of 0,794 kg/l NCV sugacane 8,82 MJ/kg i.e. GJ/t i.e. yueld 1,83 GJ/t cane 20,7% Transport to Europe: cost estimate 25 Euro/t NCV ethanol 7,4 MWh/t 21,3 MJ/l 3,4 Euro/MWh 0,34 c/kWh 1,2 Euro/GJ Coelho (GEF-STAP presentation, Delhi 2005): best new plants ethanol yield 83 l/t sugarcane investment 60 million US$2005 for 2,16 mio t/a sugarcane plant 50 mio Euro-2005 8000 h/a operation Inflation 2%/a --> 10% less in Euro 2000 4228602,62 GJ/a i.e. 45 mio Euro-2000 1174611,84 MWh/a 306 Euro/kW-th 147 MW-th angesetzt: 300 Euro/kW-th fixed costs (O&M) 2,50% pro Jahr i.e. 7,5 Euro/kW-th*a sugarcane costs: 14 $/t = 11,67 Euro-2005/t = 10,5 Euro-2000/t conversion rate Euro - $ 1,2 Auslastung: 8300h/a Brenn-/Einsatzstoff: Brennstoffe-Bio-fest gesicherte Leistung: 100% Jahr: 2030 Lebensdauer: 15a Leistung: 150MW Nutzungsgrad: 20,7% Produkt: Brennstoffe-Bio-flüssig Verwendete Allokation: Allokation nach Energieäquivalenten

Fermenter\Bio-EtOH-ZR-iLUC50% (Acker)-BR-2030/en

Fermenter für Bio-EtOH uas Zuckerrohr in Brasilien (Sao-Paulo-Region), Daten für energieautarkes System mit Prozesswärme + Hilfsstrom aus Bagasse, alles Daten aus #1, Kosten nach #2 Data from Macedo 2004: ethanol yield 86 l/t cane (best case: 92 l/t, i.e. 22,2% using yield of 1,96 GJ/t cane) NCV ethanol 26,8 MJ/kg i.e. 21,3 MJ/l for density of 0,794 kg/l NCV sugacane 8,82 MJ/kg i.e. GJ/t i.e. yueld 1,83 GJ/t cane 20,7% Transport to Europe: cost estimate 25 Euro/t NCV ethanol 7,4 MWh/t 21,3 MJ/l 3,4 Euro/MWh 0,34 c/kWh 1,2 Euro/GJ Coelho (GEF-STAP presentation, Delhi 2005): best new plants ethanol yield 83 l/t sugarcane investment 60 million US$2005 for 2,16 mio t/a sugarcane plant 50 mio Euro-2005 8000 h/a operation Inflation 2%/a --> 10% less in Euro 2000 4228602,62 GJ/a i.e. 45 mio Euro-2000 1174611,84 MWh/a 306 Euro/kW-th 147 MW-th angesetzt: 300 Euro/kW-th fixed costs (O&M) 2,50% pro Jahr i.e. 7,5 Euro/kW-th*a sugarcane costs: 14 $/t = 11,67 Euro-2005/t = 10,5 Euro-2000/t conversion rate Euro - $ 1,2 Auslastung: 8300h/a Brenn-/Einsatzstoff: Brennstoffe-Bio-fest gesicherte Leistung: 100% Jahr: 2030 Lebensdauer: 15a Leistung: 150MW Nutzungsgrad: 20,7% Produkt: Brennstoffe-Bio-flüssig Verwendete Allokation: Allokation nach Energieäquivalenten

Fermenter\Bio-EtOH-ZR-iLUC50% (Acker)-BR-2005/en

Fermenter für Bio-EtOH uas Zuckerrohr in Brasilien (Sao-Paulo-Region), Daten für energieautarkes System mit Prozesswärme + Hilfsstrom aus Bagasse, alles Daten aus #1, Kosten nach #2 Data from Macedo 2004: ethanol yield 86 l/t cane (best case: 92 l/t, i.e. 22,2% using yield of 1,96 GJ/t cane) NCV ethanol 26,8 MJ/kg i.e. 21,3 MJ/l for density of 0,794 kg/l NCV sugacane 8,82 MJ/kg i.e. GJ/t i.e. yueld 1,83 GJ/t cane 20,7% Transport to Europe: cost estimate 25 Euro/t NCV ethanol 7,4 MWh/t 21,3 MJ/l 3,4 Euro/MWh 0,34 c/kWh 1,2 Euro/GJ Coelho (GEF-STAP presentation, Delhi 2005): best new plants ethanol yield 83 l/t sugarcane investment 60 million US$2005 for 2,16 mio t/a sugarcane plant 50 mio Euro-2005 8000 h/a operation Inflation 2%/a --> 10% less in Euro 2000 4228602,62 GJ/a i.e. 45 mio Euro-2000 1174611,84 MWh/a 306 Euro/kW-th 147 MW-th angesetzt: 300 Euro/kW-th fixed costs (O&M) 2,50% pro Jahr i.e. 7,5 Euro/kW-th*a sugarcane costs: 14 $/t = 11,67 Euro-2005/t = 10,5 Euro-2000/t conversion rate Euro - $ 1,2 Auslastung: 8300h/a Brenn-/Einsatzstoff: Brennstoffe-Bio-fest gesicherte Leistung: 100% Jahr: 2005 Lebensdauer: 15a Leistung: 150MW Nutzungsgrad: 20,7% Produkt: Brennstoffe-Bio-flüssig Verwendete Allokation: Allokation nach Energieäquivalenten

Fermenter\Bio-EtOH-ZR-dLUC (Acker)-BR-2005/en

Fermenter für Bio-EtOH uas Zuckerrohr in Brasilien (Sao-Paulo-Region), Daten für energieautarkes System mit Prozesswärme + Hilfsstrom aus Bagasse, alles Daten aus #1, Kosten nach #2 Data from Macedo 2004: ethanol yield 86 l/t cane (best case: 92 l/t, i.e. 22,2% using yield of 1,96 GJ/t cane) NCV ethanol 26,8 MJ/kg i.e. 21,3 MJ/l for density of 0,794 kg/l NCV sugacane 8,82 MJ/kg i.e. GJ/t i.e. yueld 1,83 GJ/t cane 20,7% Transport to Europe: cost estimate 25 Euro/t NCV ethanol 7,4 MWh/t 21,3 MJ/l 3,4 Euro/MWh 0,34 c/kWh 1,2 Euro/GJ Coelho (GEF-STAP presentation, Delhi 2005): best new plants ethanol yield 83 l/t sugarcane investment 60 million US$2005 for 2,16 mio t/a sugarcane plant 50 mio Euro-2005 8000 h/a operation Inflation 2%/a --> 10% less in Euro 2000 4228602,62 GJ/a i.e. 45 mio Euro-2000 1174611,84 MWh/a 306 Euro/kW-th 147 MW-th angesetzt: 300 Euro/kW-th fixed costs (O&M) 2,50% pro Jahr i.e. 7,5 Euro/kW-th*a sugarcane costs: 14 $/t = 11,67 Euro-2005/t = 10,5 Euro-2000/t conversion rate Euro - $ 1,2 Auslastung: 8300h/a Brenn-/Einsatzstoff: Brennstoffe-Bio-fest gesicherte Leistung: 100% Jahr: 2005 Lebensdauer: 15a Leistung: 150MW Nutzungsgrad: 20,7% Produkt: Brennstoffe-Bio-flüssig Verwendete Allokation: Allokation nach Energieäquivalenten

Fermenter\Bio-EtOH-ZR-dLUC (Acker)-BR-2010/en

Fermenter für Bio-EtOH uas Zuckerrohr in Brasilien (Sao-Paulo-Region), Daten für energieautarkes System mit Prozesswärme + Hilfsstrom aus Bagasse, alles Daten aus #1, Kosten nach #2 Data from Macedo 2004: ethanol yield 86 l/t cane (best case: 92 l/t, i.e. 22,2% using yield of 1,96 GJ/t cane) NCV ethanol 26,8 MJ/kg i.e. 21,3 MJ/l for density of 0,794 kg/l NCV sugacane 8,82 MJ/kg i.e. GJ/t i.e. yueld 1,83 GJ/t cane 20,7% Transport to Europe: cost estimate 25 Euro/t NCV ethanol 7,4 MWh/t 21,3 MJ/l 3,4 Euro/MWh 0,34 c/kWh 1,2 Euro/GJ Coelho (GEF-STAP presentation, Delhi 2005): best new plants ethanol yield 83 l/t sugarcane investment 60 million US$2005 for 2,16 mio t/a sugarcane plant 50 mio Euro-2005 8000 h/a operation Inflation 2%/a --> 10% less in Euro 2000 4228602,62 GJ/a i.e. 45 mio Euro-2000 1174611,84 MWh/a 306 Euro/kW-th 147 MW-th angesetzt: 300 Euro/kW-th fixed costs (O&M) 2,50% pro Jahr i.e. 7,5 Euro/kW-th*a sugarcane costs: 14 $/t = 11,67 Euro-2005/t = 10,5 Euro-2000/t conversion rate Euro - $ 1,2 Auslastung: 8300h/a Brenn-/Einsatzstoff: Brennstoffe-Bio-fest gesicherte Leistung: 100% Jahr: 2010 Lebensdauer: 15a Leistung: 150MW Nutzungsgrad: 20,7% Produkt: Brennstoffe-Bio-flüssig Verwendete Allokation: Allokation nach Energieäquivalenten

1 2 3 4 5389 390 391