Die Zielsetzung des Projekts ist die Bereitstellung eines hochwirksamen Flammschutzsystems für den Biokunststoff Celluloseacetat (CA) zum Einsatz in Schaumwaren. Dieses neuartige CA-Flammschutz-Compound ist die Grundlage für innovative und nachhaltige Produktanwendungen (z.B. Dämmung, Leichtbau) zur Umsetzung der Energiewende. Für diese ist ein Flammschutz des Biokunststoffs zwingend erforderlich. Da derzeit kein flammgeschützes, schäumfähiges CA-Compound existiert, ist der Einsatz von CA in technischen Anwendungen bislang nicht möglich. Fraunhofer UMSICHT entwickelt neue Flammschutzrezepturen auf Basis des Biokunststoffs Celluloseacetat. Die entwickelten Rezepturen werden einschlägigen Flammtests unterzogen, um ihre Wirksamkeit zu untersuchen. Am IKV erfolgt dann die Erprobung der Schaumverarbeitung und Entwicklung der Treibmittelrezeptur. Nachdem in Iterationen zwischen UMSICHT und IKV die Werkstoffrezeptur hinsichtlich der Flammschutzeigenschaften und der Schaumverarbeitung optimiert worden ist, erfolgen erste Up-scalingversuche zur großtechnischen Compoundierung der neuartigen Werkstoffrezeptur durch das FKuR. Mit den hergestellten Materialien werden im Anschluss erste Feldversuche auf den Schaumanlagen des IKV (Spritzgießen) und JACKON Insulation (Extrusion) realisiert.
Die Aufnahme, Verarbeitung und Weiterleitung optischer Informationen mit Hochleistungsmaterialien ist ein grundlegender Baustein für die moderne Kommunikationstechnologie. Allerdings ist die Ausgangsbasis der meisten verwendeten Materialien für die Optik nicht nachhaltig. Durch den Einsatz von Biopolymeren, die die Natur (z. B. der Gießkannenschwamm) als optische Materialien nutzt, sollen nach den Prinzipien der Bionik im Sinne der Bioökonomie neuartige Biopolymer-optische Fasern nachhaltig ohne fossile Rohstoffe hergestellt werden. Dazu sollen zunächst Cellulosenanokugeln hergestellt werden. Zusätzlich sollen Gele der ausgewählten Biopolymere zu Filmen und Filamenten verarbeitet werden. Biopolymerfilamente werden mit dem jeweiligen anderen Biopolymer beschichtet, um so Lichtwellenleiter herzustellen. Sowohl die eingesetzten Spinnenseidenproteine (P6) als auch die Cellulose (P7) können nach ihrer Nutzungsphase einfach wiederverwertet oder biologisch abgebaut werden. Im Gegensatz zu optischen Materialien aus Glas werden zudem bei der Herstellung keine hohen Temperaturen benötigt, wodurch auch wesentliche Energie- und damit Ressourceneinsparungen ermöglicht werden.
Die Aufnahme, Verarbeitung und Weiterleitung optischer Informationen mit Hochleistungsmaterialien ist ein grundlegender Baustein für die moderne Kommunikationstechnologie. Allerdings ist die Ausgangsbasis der meisten verwendeten Materialien für die Optik nicht nachhaltig. Durch den Einsatz von Biopolymeren, die die Natur (z. B. der Gießkannenschwamm) als optische Materialien nutzt, sollen nach den Prinzipien der Bionik im Sinne der Bioökonomie neuartige Biopolymer-optische Fasern nachhaltig ohne fossile Rohstoffe hergestellt werden. Dazu sollen zunächst Cellulosenanokugeln hergestellt werden. Zusätzlich sollen Gele der ausgewählten Biopolymere zu Filmen und Filamenten verarbeitet werden. Biopolymerfilamente werden mit dem jeweiligen anderen Biopolymer beschichtet, um so Lichtwellenleiter herzustellen. Sowohl die eingesetzten Spinnenseidenproteine (P6) als auch die Cellulose (P7) können nach ihrer Nutzungsphase einfach wiederverwertet oder biologisch abgebaut werden. Im Gegensatz zu optischen Materialien aus Glas werden zudem bei der Herstellung keine hohen Temperaturen benötigt, wodurch auch wesentliche Energie- und damit Ressourceneinsparungen ermöglicht werden.
Ziel des Forschungsvorhabens ist es innovative Klebstoffe aus nachwachsenden Rohstoffen zu entwickeln, deren Vernetzung ohne Zusatz von Formaldehyd oder Formaldehydspendern erfolgt. Als neuartige Vernetzer sollen geeignete Verbindungen aus der Substanzklasse der cyclischen organischen Carbonate (COC) entwickelt und erprobt werden. Ein großer Vorteil der Carbonate ist ihre geringe Toxizität und Flüchtigkeit. Zudem können bereits einige Vertreter dieser Klasse vollständig aus nachwachsenden Rohstoffen und Kohlendioxid hergestellt werden. Im Rahmen des Projektes werden unter Einsatz der neuartigen Vernetzer Klebstoffe entwickelt die überwiegend aus biogenen Rohstoffen bestehen. Ausgangsstoffe sind vor allem die Gerüstsubstanzen und Inhaltsstoffe des Holzes (Kohlenhydrate, Lignine, Tannine). Aufgrund des Reaktionspotentials der neuartigen Vernetzer soll im Rahmen des Projektes aber auch der Ersatz von Formaldehyd in konventionellen Klebstoffen (Aminoharze, Phenolharze) getestet werden. Es sollen zunächst einfache dicyclische 5- und 6-Ring-Carbonate hergestellt und charakterisiert wer-den. In einer weiteren Versuchsreihe werden Synthesen von dicyclischen 5-Ring-Carbonaten auf der Basis von nachwachsenden Rohstoffen durchgeführt. Zur Optimierung der Synthesen werden die Reaktionsparameter variiert. Die hergestellten Vernetzer werden mit geeigneten Biopolymeren zu Copolymerisaten umgesetzt, wobei vorrangig Lignine verwendet werden, da diese bei Vor-versuchen die besten Ergebnisse erbrachten. Darüber hinaus werden für Vernetzungsversuche weitere Biopolymere mit geeigneten funktionellen Gruppen getestet. Die Vernetzer werden auch zur Härtung von konventionellen Klebharzen, vor allem zur Härtung von Pulverharzen getestet. Die aussichtsreichsten Systeme werden in einen größeren Maßstab übergeführt, um Plattenwerkstoffe und andere Applikationsmuster herstellen und prüfen zu können.
Vorhabenziel: Ziel von PlastX ist es, den gesellschaftlichen Umgang mit Plastik als systemisches Risiko in komplexen sozial-ökologischen Versorgungssystemen konzeptionell zu erfassen, dabei - aufgrund von Akteurskonstellationen, die sowohl Risikoverursacher als auch -betroffene umfassen - von geteilten Risiken auszugehen und integrative, praxisnahe Lösungsstrategien anhand der Handlungsfelder Vermeidung, Alternativen und Management aufzuzeigen. Vorgehensweise: Im Teilprojekt 3 (Arbeitspaket 1.2) 'Verpackungen und nachhaltiger Konsum' (Handlungsfeld Alternativen) werden nachhaltigere Kunststoffe (Bioplastik) auf ihre Eignung als Verpackungsalternative im Lebensmittelbereich untersucht. Der Arbeitsbereich wird konzeptionell durch die integrative Leithypothese 'Systemische Risiken sind geteilte Risiken' auf die anderen Projektbereiche bezogen.
Motivation: Keine Verbindung der Entwicklung neuer, auf nachwachsenden Rohstoffen basierenden Kunststoffen (mit neuartigen Eigenschaften) und daraus hergestellten Produkten mit einer adäquaten Erhöhung der Aussagefähigkeit bestehender und der Entwicklung neuer, auf die spezifischen Anforderungen der neuen Produkte angepassten Prüfverfahren. Daher: Unmittelbarer Forschungsbedarf zur Entwicklung und Weiterentwicklung von schnellen, kostengünstigen und hochaussagefähigen Prüfverfahren zur komplexen Analyse des orts- bzw. tiefenabhängigen mechanischen Eigenschaftsprofils derartiger Werkstoffe und Produkte. Wissenschaftlich-technisches Arbeitsziel: Werkstoffwissenschaftlich fundierte mehrparametrige Analyse von Kratz- und Haftfestigkeit, Weiterreißwiderstand und Langzeitverhalten ligninmodifizierter Kunststofffolien unter Anwendung der speziell für diese Zwecke adaptierten und neu entwickelten Verfahren (instrumentierter Kratzversuch für Folien, folienspezifischen bruchmechanischen Bewertungsmethoden Jeweils für ligninmodifizierte Folien auf Basis von PE und PET: Registrierendes Testverfahren zur quantitativen Ermittlung der Kratzfestigkeit. Bruchmechanische Verfahren zur quantitativen Bewertung der Risszähigkeit sowie zur Ermittlung der Haftfestigkeit für Stretchfolien mit intrinsischen Klebeigenschaften. Verifizierung von Struktur-Eigenschafts-Korrelationen unter Anwendung der entwickelten Testverfahren. Indikation des Alterungsverhaltens unter Anwendung der entwickelten Testverfahren.
| Origin | Count |
|---|---|
| Bund | 170 |
| Type | Count |
|---|---|
| Förderprogramm | 170 |
| License | Count |
|---|---|
| offen | 170 |
| Language | Count |
|---|---|
| Deutsch | 168 |
| Englisch | 6 |
| Resource type | Count |
|---|---|
| Keine | 55 |
| Webseite | 115 |
| Topic | Count |
|---|---|
| Boden | 135 |
| Lebewesen und Lebensräume | 114 |
| Luft | 76 |
| Mensch und Umwelt | 170 |
| Wasser | 30 |
| Weitere | 170 |