API src

Found 58 results.

Fabrik\H2-CA-2030

Wasserstoff-Elektrolyseur zur H2-Herstellung, inkl. Strombedarf für Wasseraufbereitung nach #1 Das gängige Verfahren ist die konventionelle alkalische Elektrolyse bei Temperaturen bis etwa 90°C und "leichtem" Überdruck bis etwa 10 bar. Druckelektrolyseure (ab etwa 30 bar) haben den Vorteil, den Kompressionsaufwand für den Pipelinetransport oder die Verflüssigung zu reduzieren; sie sind für 35 bis 100 bar verfügbar, aber aufwendig. Seit geraumer Zeit mit wechselnder Intensität in der Entwicklung sind Hochtemperatur(HT)elektrolyseure, bei denen der Strombedarf reduziert wird, indem die Dissoziationsenergie (Gibbs-Energie, Freie Enthalpie) des Wassers thermisch (T um 800°C) reduziert wird. Bei der Membranelektrolyse schließlich soll der Verbrauch durch direkt auf der Membran angebrachte Elektroden reduziert werden. Der Einfluss der Größe auf die Effizienz von Elektrolyseanlagen ist nach [LBST 2001] und [concawe 2006] gering. Zwischen zentralen und dezentralen Anlagen bestünde danach energetisch kein großer Unterschied. Die Datengenerierung orientiert sich am Konzept der Druckelektrolyse (#2 folgend Ausgangsdruck 30 bar), die bereits relativ ausgereift und effizient ist. Die drucklose Elektrolyse hat dagegen eine geringere Effizienz, die Hochtemperaturelektrolyse bedarf noch erheblicher Entwicklungsarbeit. Wichtige Literaturdaten und die hier abgeschätzten Rechenwerte sind in folgender Tabelle zusammengefasst. Erläuterungen Energieverbrauch: [Bossel et al. 2005] und [LBST 2001] dokumentieren und verwenden sehr ähnliche Werte. Die Rechenwerte orientieren sich wie folgt an den Quellen: zentral 2005: Maximum der Bandbreite 2020: Minimum der Bandbreite 2030: 2020 reduziert um die Hälfte der Reduktion 05/20 Verluste: über den Energieverbrauch erfasst Weitere Luftschadstoffemissionen: keine Betriebsstoffe, feste Reststoffe: Es werden wahrscheinlich zur Wasseraufbereitung geringe Menge verschiedener Chemikalien und bei der Elektrolyse selbst geringe Mengen KaOH eingesetzt. Mengenangaben dazu bzw. zu den Reststoffen liegen nicht vor. Hilfsweise wird der Einsatz an NaOH pro kg Cl2 bei der Chlor-Alkali-Elektrolyse gemäß [ecoinvent 2004] angesetzt. Es erfolgt keine Differenzierung nach Bezugsjahren (hohe Unsicherheiten des Basiswertes bei absehbar geringen Änderungen). Flächenbedarf: [LBST 2001] enthält Flächenangaben, die hier für zentrale und dezentrale Anlagen und für alle Bezugsjahre identisch übernommen werden. Materialvorleistungen: [LBST 2001] gibt Massenangaben zu verfügbaren und in Entwicklung befindlichen Elektrolysemodulen (25 bzw. 11 t / 68 kg H2 / h) sowie für einen Puffer-Druckspeicher. Für die Bezugsjahre werden nur die Elektrolyseurmassen variiert (20, 15, 12,5 t). Mit Lebensdauer und Volllaststunden wird der Einsatz pro MJ berechnet. Die Materialanteile werden gemäß [ecoinvent 2004] für generische Chemieanlagen angesetzt. Kosteninformationen (Investitions- und Betriebskosten) Investitionskosten: In [Nitsch 2003] werden für alkalische Elektrolyseanlagen für "heute" (2003, hier = 2005) und 2020 Investitionskosten angegeben, die hier übernommen werden (Umrechnung Bezug Kapazität in Menge mit 25 Jahren Lebensdauer und 90% Verfügbarkeit). 2030 wird aus 2020 mit der Hälfte der Reduktion 2005/20 abgeschätzt. Betriebskosten: Es liegen keine Daten vor. In erster Näherung können sie aus dem Energieverbrauch und dem Personaleinsatz abgeschätzt werden. Für die Stromkosten werden für 2005 und 2020 die Mittelwerte Windkraft offshore küstennah und küstenfern jeweils für mittlere Windverhältnisse aus [DLR et al. 2004] angesetzt, 2030 wird gleich 2020 gesetzt. Für den Personalstundensatz wird der Wert nach [StatBA 2007] für den Sektor Energie- und Wasserversorgung angesetzt. Personaleinsatz (Personen je Anlage bzw. Durchsatz): Hierzu liegen keine direkten Informationen vor. Eine grobe Abschätzung erfolgt über den Personaleinsatz in der Stromerzeugung in Deutschland 2005 [BMWi 2007]: Arbeitszeit / MJ Brutto-Strom = Arbeitszeit / MJ H2. Es erfolgt keine Differenzierung nach Bezugsjahren (hohe Unsicherheiten des Basiswertes bei absehbar geringen Änderungen). Auslastung: 7000h/a Brenn-/Einsatzstoff: Elektrizität Flächeninanspruchnahme: 8400m² gesicherte Leistung: 100% Jahr: 2030 Lebensdauer: 25a Leistung: 75MW Nutzungsgrad: 70,4% Produkt: Brennstoffe-Sonstige

Fabrik\H2-DZ-2020

Wasserstoff-Elektrolyseur zur H2-Herstellung, inkl. Strombedarf für Wasseraufbereitung nach #1 Das gängige Verfahren ist die konventionelle alkalische Elektrolyse bei Temperaturen bis etwa 90°C und "leichtem" Überdruck bis etwa 10 bar. Druckelektrolyseure (ab etwa 30 bar) haben den Vorteil, den Kompressionsaufwand für den Pipelinetransport oder die Verflüssigung zu reduzieren; sie sind für 35 bis 100 bar verfügbar, aber aufwendig. Seit geraumer Zeit mit wechselnder Intensität in der Entwicklung sind Hochtemperatur(HT)elektrolyseure, bei denen der Strombedarf reduziert wird, indem die Dissoziationsenergie (Gibbs-Energie, Freie Enthalpie) des Wassers thermisch (T um 800°C) reduziert wird. Bei der Membranelektrolyse schließlich soll der Verbrauch durch direkt auf der Membran angebrachte Elektroden reduziert werden. Der Einfluss der Größe auf die Effizienz von Elektrolyseanlagen ist nach [LBST 2001] und [concawe 2006] gering. Zwischen zentralen und dezentralen Anlagen bestünde danach energetisch kein großer Unterschied. Die Datengenerierung orientiert sich am Konzept der Druckelektrolyse (#2 folgend Ausgangsdruck 30 bar), die bereits relativ ausgereift und effizient ist. Die drucklose Elektrolyse hat dagegen eine geringere Effizienz, die Hochtemperaturelektrolyse bedarf noch erheblicher Entwicklungsarbeit. Wichtige Literaturdaten und die hier abgeschätzten Rechenwerte sind in folgender Tabelle zusammengefasst. Erläuterungen Energieverbrauch: [Bossel et al. 2005] und [LBST 2001] dokumentieren und verwenden sehr ähnliche Werte. Die Rechenwerte orientieren sich wie folgt an den Quellen: zentral 2005: Maximum der Bandbreite 2020: Minimum der Bandbreite 2030: 2020 reduziert um die Hälfte der Reduktion 05/20 Verluste: über den Energieverbrauch erfasst Weitere Luftschadstoffemissionen: keine Betriebsstoffe, feste Reststoffe: Es werden wahrscheinlich zur Wasseraufbereitung geringe Menge verschiedener Chemikalien und bei der Elektrolyse selbst geringe Mengen KaOH eingesetzt. Mengenangaben dazu bzw. zu den Reststoffen liegen nicht vor. Hilfsweise wird der Einsatz an NaOH pro kg Cl2 bei der Chlor-Alkali-Elektrolyse gemäß [ecoinvent 2004] angesetzt. Es erfolgt keine Differenzierung nach Bezugsjahren (hohe Unsicherheiten des Basiswertes bei absehbar geringen Änderungen). Flächenbedarf: [LBST 2001] enthält Flächenangaben, die hier für zentrale und dezentrale Anlagen und für alle Bezugsjahre identisch übernommen werden. Materialvorleistungen: [LBST 2001] gibt Massenangaben zu verfügbaren und in Entwicklung befindlichen Elektrolysemodulen (25 bzw. 11 t / 68 kg H2 / h) sowie für einen Puffer-Druckspeicher. Für die Bezugsjahre werden nur die Elektrolyseurmassen variiert (20, 15, 12,5 t). Mit Lebensdauer und Volllaststunden wird der Einsatz pro MJ berechnet. Die Materialanteile werden gemäß [ecoinvent 2004] für generische Chemieanlagen angesetzt. Kosteninformationen (Investitions- und Betriebskosten) Investitionskosten: In [Nitsch 2003] werden für alkalische Elektrolyseanlagen für "heute" (2003, hier = 2005) und 2020 Investitionskosten angegeben, die hier übernommen werden (Umrechnung Bezug Kapazität in Menge mit 25 Jahren Lebensdauer und 90% Verfügbarkeit). 2030 wird aus 2020 mit der Hälfte der Reduktion 2005/20 abgeschätzt. Betriebskosten: Es liegen keine Daten vor. In erster Näherung können sie aus dem Energieverbrauch und dem Personaleinsatz abgeschätzt werden. Für die Stromkosten werden für 2005 und 2020 die Mittelwerte Windkraft offshore küstennah und küstenfern jeweils für mittlere Windverhältnisse aus [DLR et al. 2004] angesetzt, 2030 wird gleich 2020 gesetzt. Für den Personalstundensatz wird der Wert nach [StatBA 2007] für den Sektor Energie- und Wasserversorgung angesetzt. Personaleinsatz (Personen je Anlage bzw. Durchsatz): Hierzu liegen keine direkten Informationen vor. Eine grobe Abschätzung erfolgt über den Personaleinsatz in der Stromerzeugung in Deutschland 2005 [BMWi 2007]: Arbeitszeit / MJ Brutto-Strom = Arbeitszeit / MJ H2. Es erfolgt keine Differenzierung nach Bezugsjahren (hohe Unsicherheiten des Basiswertes bei absehbar geringen Änderungen). Auslastung: 7000h/a Brenn-/Einsatzstoff: Elektrizität Flächeninanspruchnahme: 8400m² gesicherte Leistung: 100% Jahr: 2020 Lebensdauer: 25a Leistung: 75MW Nutzungsgrad: 67,8% Produkt: Brennstoffe-Sonstige

Fabrik\H2-DZ-2050

Wasserstoff-Elektrolyseur zur H2-Herstellung, inkl. Strombedarf für Wasseraufbereitung nach #1 Das gängige Verfahren ist die konventionelle alkalische Elektrolyse bei Temperaturen bis etwa 90°C und "leichtem" Überdruck bis etwa 10 bar. Druckelektrolyseure (ab etwa 30 bar) haben den Vorteil, den Kompressionsaufwand für den Pipelinetransport oder die Verflüssigung zu reduzieren; sie sind für 35 bis 100 bar verfügbar, aber aufwendig. Seit geraumer Zeit mit wechselnder Intensität in der Entwicklung sind Hochtemperatur(HT)elektrolyseure, bei denen der Strombedarf reduziert wird, indem die Dissoziationsenergie (Gibbs-Energie, Freie Enthalpie) des Wassers thermisch (T um 800°C) reduziert wird. Bei der Membranelektrolyse schließlich soll der Verbrauch durch direkt auf der Membran angebrachte Elektroden reduziert werden. Der Einfluss der Größe auf die Effizienz von Elektrolyseanlagen ist nach [LBST 2001] und [concawe 2006] gering. Zwischen zentralen und dezentralen Anlagen bestünde danach energetisch kein großer Unterschied. Die Datengenerierung orientiert sich am Konzept der Druckelektrolyse (#2 folgend Ausgangsdruck 30 bar), die bereits relativ ausgereift und effizient ist. Die drucklose Elektrolyse hat dagegen eine geringere Effizienz, die Hochtemperaturelektrolyse bedarf noch erheblicher Entwicklungsarbeit. Wichtige Literaturdaten und die hier abgeschätzten Rechenwerte sind in folgender Tabelle zusammengefasst. Erläuterungen Energieverbrauch: [Bossel et al. 2005] und [LBST 2001] dokumentieren und verwenden sehr ähnliche Werte. Die Rechenwerte orientieren sich wie folgt an den Quellen: zentral 2005: Maximum der Bandbreite 2020: Minimum der Bandbreite 2030: 2020 reduziert um die Hälfte der Reduktion 05/20 Verluste: über den Energieverbrauch erfasst Weitere Luftschadstoffemissionen: keine Betriebsstoffe, feste Reststoffe: Es werden wahrscheinlich zur Wasseraufbereitung geringe Menge verschiedener Chemikalien und bei der Elektrolyse selbst geringe Mengen KaOH eingesetzt. Mengenangaben dazu bzw. zu den Reststoffen liegen nicht vor. Hilfsweise wird der Einsatz an NaOH pro kg Cl2 bei der Chlor-Alkali-Elektrolyse gemäß [ecoinvent 2004] angesetzt. Es erfolgt keine Differenzierung nach Bezugsjahren (hohe Unsicherheiten des Basiswertes bei absehbar geringen Änderungen). Flächenbedarf: [LBST 2001] enthält Flächenangaben, die hier für zentrale und dezentrale Anlagen und für alle Bezugsjahre identisch übernommen werden. Materialvorleistungen: [LBST 2001] gibt Massenangaben zu verfügbaren und in Entwicklung befindlichen Elektrolysemodulen (25 bzw. 11 t / 68 kg H2 / h) sowie für einen Puffer-Druckspeicher. Für die Bezugsjahre werden nur die Elektrolyseurmassen variiert (20, 15, 12,5 t). Mit Lebensdauer und Volllaststunden wird der Einsatz pro MJ berechnet. Die Materialanteile werden gemäß [ecoinvent 2004] für generische Chemieanlagen angesetzt. Kosteninformationen (Investitions- und Betriebskosten) Investitionskosten: In [Nitsch 2003] werden für alkalische Elektrolyseanlagen für "heute" (2003, hier = 2005) und 2020 Investitionskosten angegeben, die hier übernommen werden (Umrechnung Bezug Kapazität in Menge mit 25 Jahren Lebensdauer und 90% Verfügbarkeit). 2030 wird aus 2020 mit der Hälfte der Reduktion 2005/20 abgeschätzt. Betriebskosten: Es liegen keine Daten vor. In erster Näherung können sie aus dem Energieverbrauch und dem Personaleinsatz abgeschätzt werden. Für die Stromkosten werden für 2005 und 2020 die Mittelwerte Windkraft offshore küstennah und küstenfern jeweils für mittlere Windverhältnisse aus [DLR et al. 2004] angesetzt, 2030 wird gleich 2020 gesetzt. Für den Personalstundensatz wird der Wert nach [StatBA 2007] für den Sektor Energie- und Wasserversorgung angesetzt. Personaleinsatz (Personen je Anlage bzw. Durchsatz): Hierzu liegen keine direkten Informationen vor. Eine grobe Abschätzung erfolgt über den Personaleinsatz in der Stromerzeugung in Deutschland 2005 [BMWi 2007]: Arbeitszeit / MJ Brutto-Strom = Arbeitszeit / MJ H2. Es erfolgt keine Differenzierung nach Bezugsjahren (hohe Unsicherheiten des Basiswertes bei absehbar geringen Änderungen). Auslastung: 7000h/a Brenn-/Einsatzstoff: Elektrizität Flächeninanspruchnahme: 8400m² gesicherte Leistung: 100% Jahr: 2050 Lebensdauer: 25a Leistung: 75MW Nutzungsgrad: 67,8% Produkt: Brennstoffe-Sonstige

Fabrik\H2-DZ-2030

Wasserstoff-Elektrolyseur zur H2-Herstellung, inkl. Strombedarf für Wasseraufbereitung nach #1 Das gängige Verfahren ist die konventionelle alkalische Elektrolyse bei Temperaturen bis etwa 90°C und "leichtem" Überdruck bis etwa 10 bar. Druckelektrolyseure (ab etwa 30 bar) haben den Vorteil, den Kompressionsaufwand für den Pipelinetransport oder die Verflüssigung zu reduzieren; sie sind für 35 bis 100 bar verfügbar, aber aufwendig. Seit geraumer Zeit mit wechselnder Intensität in der Entwicklung sind Hochtemperatur(HT)elektrolyseure, bei denen der Strombedarf reduziert wird, indem die Dissoziationsenergie (Gibbs-Energie, Freie Enthalpie) des Wassers thermisch (T um 800°C) reduziert wird. Bei der Membranelektrolyse schließlich soll der Verbrauch durch direkt auf der Membran angebrachte Elektroden reduziert werden. Der Einfluss der Größe auf die Effizienz von Elektrolyseanlagen ist nach [LBST 2001] und [concawe 2006] gering. Zwischen zentralen und dezentralen Anlagen bestünde danach energetisch kein großer Unterschied. Die Datengenerierung orientiert sich am Konzept der Druckelektrolyse (#2 folgend Ausgangsdruck 30 bar), die bereits relativ ausgereift und effizient ist. Die drucklose Elektrolyse hat dagegen eine geringere Effizienz, die Hochtemperaturelektrolyse bedarf noch erheblicher Entwicklungsarbeit. Wichtige Literaturdaten und die hier abgeschätzten Rechenwerte sind in folgender Tabelle zusammengefasst. Erläuterungen Energieverbrauch: [Bossel et al. 2005] und [LBST 2001] dokumentieren und verwenden sehr ähnliche Werte. Die Rechenwerte orientieren sich wie folgt an den Quellen: zentral 2005: Maximum der Bandbreite 2020: Minimum der Bandbreite 2030: 2020 reduziert um die Hälfte der Reduktion 05/20 Verluste: über den Energieverbrauch erfasst Weitere Luftschadstoffemissionen: keine Betriebsstoffe, feste Reststoffe: Es werden wahrscheinlich zur Wasseraufbereitung geringe Menge verschiedener Chemikalien und bei der Elektrolyse selbst geringe Mengen KaOH eingesetzt. Mengenangaben dazu bzw. zu den Reststoffen liegen nicht vor. Hilfsweise wird der Einsatz an NaOH pro kg Cl2 bei der Chlor-Alkali-Elektrolyse gemäß [ecoinvent 2004] angesetzt. Es erfolgt keine Differenzierung nach Bezugsjahren (hohe Unsicherheiten des Basiswertes bei absehbar geringen Änderungen). Flächenbedarf: [LBST 2001] enthält Flächenangaben, die hier für zentrale und dezentrale Anlagen und für alle Bezugsjahre identisch übernommen werden. Materialvorleistungen: [LBST 2001] gibt Massenangaben zu verfügbaren und in Entwicklung befindlichen Elektrolysemodulen (25 bzw. 11 t / 68 kg H2 / h) sowie für einen Puffer-Druckspeicher. Für die Bezugsjahre werden nur die Elektrolyseurmassen variiert (20, 15, 12,5 t). Mit Lebensdauer und Volllaststunden wird der Einsatz pro MJ berechnet. Die Materialanteile werden gemäß [ecoinvent 2004] für generische Chemieanlagen angesetzt. Kosteninformationen (Investitions- und Betriebskosten) Investitionskosten: In [Nitsch 2003] werden für alkalische Elektrolyseanlagen für "heute" (2003, hier = 2005) und 2020 Investitionskosten angegeben, die hier übernommen werden (Umrechnung Bezug Kapazität in Menge mit 25 Jahren Lebensdauer und 90% Verfügbarkeit). 2030 wird aus 2020 mit der Hälfte der Reduktion 2005/20 abgeschätzt. Betriebskosten: Es liegen keine Daten vor. In erster Näherung können sie aus dem Energieverbrauch und dem Personaleinsatz abgeschätzt werden. Für die Stromkosten werden für 2005 und 2020 die Mittelwerte Windkraft offshore küstennah und küstenfern jeweils für mittlere Windverhältnisse aus [DLR et al. 2004] angesetzt, 2030 wird gleich 2020 gesetzt. Für den Personalstundensatz wird der Wert nach [StatBA 2007] für den Sektor Energie- und Wasserversorgung angesetzt. Personaleinsatz (Personen je Anlage bzw. Durchsatz): Hierzu liegen keine direkten Informationen vor. Eine grobe Abschätzung erfolgt über den Personaleinsatz in der Stromerzeugung in Deutschland 2005 [BMWi 2007]: Arbeitszeit / MJ Brutto-Strom = Arbeitszeit / MJ H2. Es erfolgt keine Differenzierung nach Bezugsjahren (hohe Unsicherheiten des Basiswertes bei absehbar geringen Änderungen). Auslastung: 7000h/a Brenn-/Einsatzstoff: Elektrizität Flächeninanspruchnahme: 8400m² gesicherte Leistung: 100% Jahr: 2030 Lebensdauer: 25a Leistung: 75MW Nutzungsgrad: 67,8% Produkt: Brennstoffe-Sonstige

Fabrik\H2-CA-2020

Wasserstoff-Elektrolyseur zur H2-Herstellung, inkl. Strombedarf für Wasseraufbereitung nach #1 Das gängige Verfahren ist die konventionelle alkalische Elektrolyse bei Temperaturen bis etwa 90°C und "leichtem" Überdruck bis etwa 10 bar. Druckelektrolyseure (ab etwa 30 bar) haben den Vorteil, den Kompressionsaufwand für den Pipelinetransport oder die Verflüssigung zu reduzieren; sie sind für 35 bis 100 bar verfügbar, aber aufwendig. Seit geraumer Zeit mit wechselnder Intensität in der Entwicklung sind Hochtemperatur(HT)elektrolyseure, bei denen der Strombedarf reduziert wird, indem die Dissoziationsenergie (Gibbs-Energie, Freie Enthalpie) des Wassers thermisch (T um 800°C) reduziert wird. Bei der Membranelektrolyse schließlich soll der Verbrauch durch direkt auf der Membran angebrachte Elektroden reduziert werden. Der Einfluss der Größe auf die Effizienz von Elektrolyseanlagen ist nach [LBST 2001] und [concawe 2006] gering. Zwischen zentralen und dezentralen Anlagen bestünde danach energetisch kein großer Unterschied. Die Datengenerierung orientiert sich am Konzept der Druckelektrolyse (#2 folgend Ausgangsdruck 30 bar), die bereits relativ ausgereift und effizient ist. Die drucklose Elektrolyse hat dagegen eine geringere Effizienz, die Hochtemperaturelektrolyse bedarf noch erheblicher Entwicklungsarbeit. Wichtige Literaturdaten und die hier abgeschätzten Rechenwerte sind in folgender Tabelle zusammengefasst. Erläuterungen Energieverbrauch: [Bossel et al. 2005] und [LBST 2001] dokumentieren und verwenden sehr ähnliche Werte. Die Rechenwerte orientieren sich wie folgt an den Quellen: zentral 2005: Maximum der Bandbreite 2020: Minimum der Bandbreite 2030: 2020 reduziert um die Hälfte der Reduktion 05/20 Verluste: über den Energieverbrauch erfasst Weitere Luftschadstoffemissionen: keine Betriebsstoffe, feste Reststoffe: Es werden wahrscheinlich zur Wasseraufbereitung geringe Menge verschiedener Chemikalien und bei der Elektrolyse selbst geringe Mengen KaOH eingesetzt. Mengenangaben dazu bzw. zu den Reststoffen liegen nicht vor. Hilfsweise wird der Einsatz an NaOH pro kg Cl2 bei der Chlor-Alkali-Elektrolyse gemäß [ecoinvent 2004] angesetzt. Es erfolgt keine Differenzierung nach Bezugsjahren (hohe Unsicherheiten des Basiswertes bei absehbar geringen Änderungen). Flächenbedarf: [LBST 2001] enthält Flächenangaben, die hier für zentrale und dezentrale Anlagen und für alle Bezugsjahre identisch übernommen werden. Materialvorleistungen: [LBST 2001] gibt Massenangaben zu verfügbaren und in Entwicklung befindlichen Elektrolysemodulen (25 bzw. 11 t / 68 kg H2 / h) sowie für einen Puffer-Druckspeicher. Für die Bezugsjahre werden nur die Elektrolyseurmassen variiert (20, 15, 12,5 t). Mit Lebensdauer und Volllaststunden wird der Einsatz pro MJ berechnet. Die Materialanteile werden gemäß [ecoinvent 2004] für generische Chemieanlagen angesetzt. Kosteninformationen (Investitions- und Betriebskosten) Investitionskosten: In [Nitsch 2003] werden für alkalische Elektrolyseanlagen für "heute" (2003, hier = 2005) und 2020 Investitionskosten angegeben, die hier übernommen werden (Umrechnung Bezug Kapazität in Menge mit 25 Jahren Lebensdauer und 90% Verfügbarkeit). 2030 wird aus 2020 mit der Hälfte der Reduktion 2005/20 abgeschätzt. Betriebskosten: Es liegen keine Daten vor. In erster Näherung können sie aus dem Energieverbrauch und dem Personaleinsatz abgeschätzt werden. Für die Stromkosten werden für 2005 und 2020 die Mittelwerte Windkraft offshore küstennah und küstenfern jeweils für mittlere Windverhältnisse aus [DLR et al. 2004] angesetzt, 2030 wird gleich 2020 gesetzt. Für den Personalstundensatz wird der Wert nach [StatBA 2007] für den Sektor Energie- und Wasserversorgung angesetzt. Personaleinsatz (Personen je Anlage bzw. Durchsatz): Hierzu liegen keine direkten Informationen vor. Eine grobe Abschätzung erfolgt über den Personaleinsatz in der Stromerzeugung in Deutschland 2005 [BMWi 2007]: Arbeitszeit / MJ Brutto-Strom = Arbeitszeit / MJ H2. Es erfolgt keine Differenzierung nach Bezugsjahren (hohe Unsicherheiten des Basiswertes bei absehbar geringen Änderungen). Auslastung: 7000h/a Brenn-/Einsatzstoff: Elektrizität Flächeninanspruchnahme: 8400m² gesicherte Leistung: 100% Jahr: 2020 Lebensdauer: 25a Leistung: 75MW Nutzungsgrad: 67,8% Produkt: Brennstoffe-Sonstige

Fabrik\H2-CA-2050

Wasserstoff-Elektrolyseur zur H2-Herstellung, inkl. Strombedarf für Wasseraufbereitung nach #1 Das gängige Verfahren ist die konventionelle alkalische Elektrolyse bei Temperaturen bis etwa 90°C und "leichtem" Überdruck bis etwa 10 bar. Druckelektrolyseure (ab etwa 30 bar) haben den Vorteil, den Kompressionsaufwand für den Pipelinetransport oder die Verflüssigung zu reduzieren; sie sind für 35 bis 100 bar verfügbar, aber aufwendig. Seit geraumer Zeit mit wechselnder Intensität in der Entwicklung sind Hochtemperatur(HT)elektrolyseure, bei denen der Strombedarf reduziert wird, indem die Dissoziationsenergie (Gibbs-Energie, Freie Enthalpie) des Wassers thermisch (T um 800°C) reduziert wird. Bei der Membranelektrolyse schließlich soll der Verbrauch durch direkt auf der Membran angebrachte Elektroden reduziert werden. Der Einfluss der Größe auf die Effizienz von Elektrolyseanlagen ist nach [LBST 2001] und [concawe 2006] gering. Zwischen zentralen und dezentralen Anlagen bestünde danach energetisch kein großer Unterschied. Die Datengenerierung orientiert sich am Konzept der Druckelektrolyse (#2 folgend Ausgangsdruck 30 bar), die bereits relativ ausgereift und effizient ist. Die drucklose Elektrolyse hat dagegen eine geringere Effizienz, die Hochtemperaturelektrolyse bedarf noch erheblicher Entwicklungsarbeit. Wichtige Literaturdaten und die hier abgeschätzten Rechenwerte sind in folgender Tabelle zusammengefasst. Erläuterungen Energieverbrauch: [Bossel et al. 2005] und [LBST 2001] dokumentieren und verwenden sehr ähnliche Werte. Die Rechenwerte orientieren sich wie folgt an den Quellen: zentral 2005: Maximum der Bandbreite 2020: Minimum der Bandbreite 2030: 2020 reduziert um die Hälfte der Reduktion 05/20 Verluste: über den Energieverbrauch erfasst Weitere Luftschadstoffemissionen: keine Betriebsstoffe, feste Reststoffe: Es werden wahrscheinlich zur Wasseraufbereitung geringe Menge verschiedener Chemikalien und bei der Elektrolyse selbst geringe Mengen KaOH eingesetzt. Mengenangaben dazu bzw. zu den Reststoffen liegen nicht vor. Hilfsweise wird der Einsatz an NaOH pro kg Cl2 bei der Chlor-Alkali-Elektrolyse gemäß [ecoinvent 2004] angesetzt. Es erfolgt keine Differenzierung nach Bezugsjahren (hohe Unsicherheiten des Basiswertes bei absehbar geringen Änderungen). Flächenbedarf: [LBST 2001] enthält Flächenangaben, die hier für zentrale und dezentrale Anlagen und für alle Bezugsjahre identisch übernommen werden. Materialvorleistungen: [LBST 2001] gibt Massenangaben zu verfügbaren und in Entwicklung befindlichen Elektrolysemodulen (25 bzw. 11 t / 68 kg H2 / h) sowie für einen Puffer-Druckspeicher. Für die Bezugsjahre werden nur die Elektrolyseurmassen variiert (20, 15, 12,5 t). Mit Lebensdauer und Volllaststunden wird der Einsatz pro MJ berechnet. Die Materialanteile werden gemäß [ecoinvent 2004] für generische Chemieanlagen angesetzt. Kosteninformationen (Investitions- und Betriebskosten) Investitionskosten: In [Nitsch 2003] werden für alkalische Elektrolyseanlagen für "heute" (2003, hier = 2005) und 2020 Investitionskosten angegeben, die hier übernommen werden (Umrechnung Bezug Kapazität in Menge mit 25 Jahren Lebensdauer und 90% Verfügbarkeit). 2030 wird aus 2020 mit der Hälfte der Reduktion 2005/20 abgeschätzt. Betriebskosten: Es liegen keine Daten vor. In erster Näherung können sie aus dem Energieverbrauch und dem Personaleinsatz abgeschätzt werden. Für die Stromkosten werden für 2005 und 2020 die Mittelwerte Windkraft offshore küstennah und küstenfern jeweils für mittlere Windverhältnisse aus [DLR et al. 2004] angesetzt, 2030 wird gleich 2020 gesetzt. Für den Personalstundensatz wird der Wert nach [StatBA 2007] für den Sektor Energie- und Wasserversorgung angesetzt. Personaleinsatz (Personen je Anlage bzw. Durchsatz): Hierzu liegen keine direkten Informationen vor. Eine grobe Abschätzung erfolgt über den Personaleinsatz in der Stromerzeugung in Deutschland 2005 [BMWi 2007]: Arbeitszeit / MJ Brutto-Strom = Arbeitszeit / MJ H2. Es erfolgt keine Differenzierung nach Bezugsjahren (hohe Unsicherheiten des Basiswertes bei absehbar geringen Änderungen). Auslastung: 7000h/a Brenn-/Einsatzstoff: Elektrizität Flächeninanspruchnahme: 8400m² gesicherte Leistung: 100% Jahr: 2050 Lebensdauer: 25a Leistung: 75MW Nutzungsgrad: 70,4% Produkt: Brennstoffe-Sonstige

Thermische Energiespeicher: PCM-Metro-2: Dynamisches Verhalten und Alterung von PCM Komponenten

Das Projekt "Thermische Energiespeicher: PCM-Metro-2: Dynamisches Verhalten und Alterung von PCM Komponenten" wird vom Umweltbundesamt gefördert und von Bayerisches Zentrum für Angewandte Energieforschung e.V. durchgeführt. In dem Projekt PCM-Metro-2 soll das dynamische Verhalten und die Alterung von PCM Komponenten untersucht werden. Das Verständnis zeitabhängiger Prozesse in PCM Komponenten ermöglicht eine zielgerichtete, effektive Auslegung der Komponenten auf die vorhandene Aufgabenstellung. Erfahrungen aus vorherigen Arbeiten haben gezeigt, dass die alleinige Kenntnis von Speicherkapazität und maximaler Leistung nicht ausreicht, um die Wirkung einer PCM Komponente in einer Anwendung genau vorherzusagen. Das bisherige Augenmerk der Forschung auf die Größe Enthalpie reicht deshalb hierbei nicht aus. Im Rahmen des Vorhabens sollen die jeweils maßgeblichen Parameter für das dynamische Verhalten unter unterschiedlichen Randbedingungen von der Materialebene über die Komponentenebene bis hin zur Systemebene ermittelt werden. Um die vor allem für Anwendungen im Gebäudebereich notwendige hohe Lebensdauer einer PCM Anwendung garantieren zu können, muss die Alterung von PCMs untersucht werden. Alterungsmechanismen müssen verstanden werden und daraufhin gezielt abgestimmte Methoden der beschleunigten Alterung entwickelt oder vorhandene Prüfverfahren auf die Belange eines PCM modifiziert werden. Das Vorgehen zur beschleunigten Alterung beruht bisher auf der thermischen Zyklierung von PCM. Makroskopische Systeme, z.B. PCM gefüllte Platten, wurden nur in Einzelfällen zykliert. Ziel ist es in diesem Projekt, ein grundlegendes Verständnis der Degradationsprozesse zu erlangen so dass zukünftig eine gezielte messtechnische Erfassung und objektive Bewertung möglich wird. Materialabhängig sollen die Grundlagen geschaffen werden zur Entwicklung geeigneter Prüfmethoden der beschleunigten Alterung und Messverfahren zur Bestimmung der Degradationsparameter. Weiterhin sollen durch einen Abgleich der Ergebnisse aus Versuchen der beschleunigten Alterung mit realen Erfahrungen Skalierungsparameter bestimmt werden, die eine belastbare Hochrechnung der Prüfergebnisse auf die reale Anwendung ermöglichen.

Teilprojekt 3

Das Projekt "Teilprojekt 3" wird vom Umweltbundesamt gefördert und von Technische Universität Berlin, Institut für Technischen Umweltschutz, Fachgebiet Umweltverfahrenstechnik durchgeführt. Ziel des Projektes ist die Effizienzsteigerung des Kühlwassereinsatzes zur Verringerung des Frischwasserverbrauchs. Konkret wird eine Halbierung der Absalzwassermenge als realistisches Ziel angesehen - für einen durchschnittlichen Stahlstandort ergibt sich eine Wassereinsparung von bis zu 800.000 m3/a. Der Lösungsweg besteht in der Verfahrensentwicklung zur Salzabtrennung aus Kreislaufwasser, Zusatzwasser und Absalzwasser. Durch die bedarfsgerechte Dosierung und Abstimmung von Kühlwasserchemikalien auf die Wasserbehandlung sollen der Salzeintrag und damit der Wasserverbrauch zusätzlich gesenkt werden. Dies ist nur durch Entwicklung und Einsatz eines Simulationstools für das gesamte Kreislaufwassersystem möglich. Mit der Effizienzsteigerung werden folgende Ziele erreicht: Verbesserung der Wirtschaftlichkeit von gekühlten Prozessen, Schutz der natürlichen Wasserquellen vor Verunreinigung durch Zusätze und Salze und geringere Abhängigkeit des Produktionsprozesses von der Wasserverfügbarkeit. In Europa, in Ländern ohne Wassermangel, wird ein Marktpotential für das System zur bedarfsgerechten Chemikaliendosierung gesehen. Weltweit, insbesondere in Gebieten mit Wassermangel, wird ein Marktpotential für die entwickelte Verfahrenskombination zur Salzentfernung und hocheffizienten Wasserkreislaufführung gesehen. Das Teilvorhaben beinhaltet die Erstellung eines Tools zur Simulation der Stoff-, Wasser- und Enthalpieströme. Dieses wird für die Optimierung der Kühlung und der neuen Technologien und Hilfsstoffe genutzt. Die LCA ermöglicht eine Bewertung der Wirtschaftlichkeit und der Nachhaltigkeit. Zur Erstellung des Tools und für die LCA ist eine umfangreiche Datenerhebung nötig. Es werden z.B. die Abwasserströme charakterisiert, die Systemgrenzen für die LCA definiert sowie Modelle für noch nicht vorhandene Prozesse erstellt. In der zweiten Projekthälfte werden diese mit Hilfe der praktischen Ergebnisse validiert und anschließend für die Optimierung und Bewertung genutzt.

Teilaufgabe: Grundlagenermittlung, Konzeption sowie Monitoring und Evaluierung

Das Projekt "Teilaufgabe: Grundlagenermittlung, Konzeption sowie Monitoring und Evaluierung" wird vom Umweltbundesamt gefördert und von RWTH Aachen University, Aachener Verfahrenstechnik, Lehrstuhl für Chemische Verfahrenstechnik durchgeführt. Das Ziel des Vorhabens besteht in der Entwicklung eines neuartigen Enthalpietauschers für die Lüftungstechnik. Im Vergleich zu konventionellen Systemen überzeugt das innovative Konzept durch geringe Druckverluste (reduzierten Energieverbrauch) sowie bessere Übertragungsleistungen. Die technische Ausarbeitung des Enthalpietauschers sieht den Einsatz wasserdampfpermeabler Membranen als selektive Barriere zwischen den Strömungskanälen vor. Ab- und Zuluft strömen an den jeweils gegenüberliegenden Seiten der Membran vorbei und sorgen somit für den Übergang von sensibler und latenter Wärme, ohne eine Rezirkulation der Abluft in den Raum zuzulassen. Aufbauend auf der Definition eines Lastenheftes werden innerhalb der ersten beiden Projektjahre grundlegende Untersuchungen im Bereich der Membran- und Spacerentwicklung sowie des Moduldesigns durchgeführt. Die Konzeptionierungsphase endet mit einer vorläufigen Bewertung der Energieeffizienz und der Ausarbeitung eines großtechnischen Fertigungskonzeptes für die Module. Nach einer Prototypenfertigung im Maßstab1:1 werden in einer Messreihe innerhalb des Neubaus der Aachener Verfahrenstechnik (NGP2) die neuartigen Enthalpietauscher unter realen Bedingungen und bei verschiedenen Lastfällen vermessen . Bauliche Veränderungen, die für die Realisierung der Messreihe erforderlich sind, werden in der Planung des Gebäudes berücksichtigt. Eine Anpassung der Regelungsparameter des Lüftungssystems an die neuen Module ist jedoch unausweichlich.

Teilvorhaben 3: Simulation

Das Projekt "Teilvorhaben 3: Simulation" wird vom Umweltbundesamt gefördert und von Technische Universität Bergakademie Freiberg, Institut für Energieverfahrenstechnik und Chemieingenieurwesen durchgeführt. In der Vergangenheit wurde in mehreren Ursache-Wirkungs-Untersuchungen der Einfluss der Beimischung von Bioethanol zu Dieselkraftstoffen auf die Schadstoffemissionen und die Verbrennungseffizienz untersucht. Es wurde bislang NICHT untersucht, wie der Bioethanolanteil die Kraftstoff/Luft-Gemischbildung (Luft meist im überkritischen Zustand) beeinflusst, so dass die eigentlichen Gründe für die Bioethanol-induzierte Veränderung der Schadstoffemissionen und der Verbrennungseffizienz nicht bekannt sind. Darum wird in diesem Forschungsvorhaben die Strahl-/Jetvermischung zwischen dem bioethanolhaltigen Dieselkraftstoff und dem Umgebungsfluid unter dieselrelevanten Druck- und Temperaturbedingungen experimentell und in situ quantitativ analysiert und in einem numerischen Model abgebildet. Aus dem daraus erwachsenen Verständnis über die durch die Bioethanolzugabe entstandenen Veränderungen in der Kraftstoff/Luft-Gemischbildung kann die Prozessführung (Einspritzdruck, Einspritzzeitpunkt, ...) auf den Bioethanolgehalt angepasst werden und so das eigentliche Potenzial (Herabsetzung der Viskosität, erhöhte Verdampfungsenthalpie, Sauerstoffanteil im Ethanol) der Bioethanolzumischung erst richtig ausgeschöpft werden. Das Vorhaben unterteilt sich in vier ineinandergreifende Arbeitspakete, die jeweils von einer Forschungsstelle mit der entsprechenden Expertise bearbeitet werden. Im Arbeitspaket (AP) I werden in einer optisch zugänglichen Einspritzkammer die verschiedenen Gemischbildungs-regime charakterisiert. Im AP II wird die Gemischbildung an ausgesuchten Betriebspunkten quantitativ analysiert, so dass sie im AP III numerisch abgebildet werden kann. Im AP IV wird die praktische Relevanz durch die Einbindung eines Industriepartners sichergestellt.

1 2 3 4 5 6