API src

Found 140 results.

Related terms

DE-LIGHT Transport

Das Projekt "DE-LIGHT Transport" wird vom Umweltbundesamt gefördert und von Center of Maritime Technologies e.V. durchgeführt. DE-LIGHT Transport is a multi-national initiative supported by the European Commission's Framework 6 programme that is investigating the design and manufacturing of lightweight sandwich structures in the marine, rail and freight container industries. Sandwich materials, consisting of two thin facings separated by a low density core, can be used to produce structures that are both light and stiff. They also offer opportunities for parts reduction through design integration, improved surface finish and lower assembly and outfitting costs. DE-LIGHT Transport aims to further promote the use of sandwich materials by developing key technologies that will support the practical realisation of robust sandwich designs. Specifically, this will include: - A multi-material sandwich design tool. Previous work has often focussed on a particular type of sandwich construction (e.g. laser-welded steel or composite). This has tended to yield niche results with limited applicability. DE-LIGHT Transport will implement a more generic design approach that will allow the evaluation and optimisation of a wide range of material and structural mixes according to the requirements of a given application. - Strategies for joining, assembly and outfitting ? the bringing together and integration of separate sandwich panels and/or sub-components to produce finished structures. In particular, modular approaches for the off-line production of sandwich assemblies to exploit economies of scale will be developed. Testing and validation procedures ? to provide accurate and reliable methods of determining fitness for purpose. The above technologies will be demonstrated within the project through the design and manufacturing of six prototype structures. These will include deck and deckhouse structures for ships, a rail vehicle cab, and a freight container. Risk-based design principals will be applied throughout to ensure that the new designs comply with existing regulatory frameworks. It is anticipated that DE-LIGHT Transport will provide designers of vehicles and vessels with practical approaches to the implementation of sandwich solutions as an alternative to traditional stiffened-plate designs. In this way, the benefits of sandwich construction will be unlocked for a wider range of applications.

E 1.2: Multi-layer drying models for optimising high value crop drying in small scale food industries

Das Projekt "E 1.2: Multi-layer drying models for optimising high value crop drying in small scale food industries" wird vom Umweltbundesamt gefördert und von Universität Hohenheim, Institut für Agrartechnik, Fachgebiet Agrartechnik in den Tropen und Subtropen durchgeführt. Fruit tree cultivation is a suitable option for erosion control in mountainous regions of Southeast Asia. However, seasonal overproduction and insufficient access to markets can cause economic losses. The possibility of processing fruits locally could contribute considerably to increase and stabilize farm income. Currently, fruit drying methods in these areas are yielding products of inferior quality. Pre-treatments such as sulphurizing are commonly used, but can make the product undesirable for international markets. In addition, high energy requirements increase production costs significantly. Therefore, the objective of subproject E1.2 is to optimize the drying process of small-scale fruit processing industries in terms of dryer capacity, energy consumption and efficiency and end product quality. During SFB-phase II in E1.1, drying fundamentals for the key fruits mango, litchi and longan were established. In laboratory experiments, impacts of drying parameters on quality were investigated and numerical single-layer models for simulation of drying kinetics have been designed. In SFB-phase III this knowledge will be expanded with the aim of optimizing practical drying processes. Therefore, the single-layer models will be extended to multi-layer models for simulating bulk-drying conditions. The Finite Element Method (FEM) will be adapted to calculate heat and mass transfer processes. Thermodynamic behavior of batch and tray dryers will be simulated using Computational Fluid Dynamics (CFD) software. Drying facilities will be optimized by systematic parameter variation. For reduction of energy costs, the potential of solar energy and biomass will be investigated in particular. Further research approaches are resulting from cooperation with other subprojects. A mechanic-enzymatic peeling method will be jointly used with E2.3 for studying the drying behavior of peeled litchi and longan fruits. Furthermore, a fruit maturity sensor based on Acoustic Resonance Spectroscopy (ARS) will be developed in cooperation with E2.3 and B3.2. Finally, an internet platform will be built for exchange of farmer-processor information about harvest time and quantities to increase utilization of the processing facilities.

Implementation of EC Requirements on End-of-Life Vehicles (2000/53/EC) in the Baltic States

Das Projekt "Implementation of EC Requirements on End-of-Life Vehicles (2000/53/EC) in the Baltic States" wird vom Umweltbundesamt gefördert und von Ökopol Institut für Ökologie und Politik GmbH durchgeführt.

High density power electronics for FC- and ICE-Hybrid Electric Vehicle Powertrains (HOPE)

Das Projekt "High density power electronics for FC- and ICE-Hybrid Electric Vehicle Powertrains (HOPE)" wird vom Umweltbundesamt gefördert und von Siemens AG durchgeführt. Objective: The project HOPE is addressing power electronics. It is based on previous EU research projects like the recently finished FW5 HIMRATE (high-temperature power modules), FW5 PROCURE (high-temperature passive components), and MEDEA+ HOTCAR (high-temperature control electronics) and other EU and national research projects. The general objectives of HOPE are: Cost reduction; meet reliability requirements; reduction of volume and weight. This is a necessity to bring the FC- and ICE-hybrid vehicles to success. WP1 defines specifications common to OEM for FC- and ICE-hybrid vehicle drive systems; Identification of common key parameters (power, voltage, size) that allows consequent standardisation; developing a scalability matrix for power electronic building blocks PEBBs. The power ranges will be much higher than those of e.g. HIMRATE and will go beyond 100 kW electric power. WP2 works out one reference mission profile, which will be taken as the basis for the very extensive reliability tests planned. WP3 is investigating key technologies for PEBBs in every respect: materials, components (active Si- and SiC switches, passive devices, sensors), new solders and alternative joinings, cooling, and EMI shielding. In WP4 three PEBBs will be developed: HDPM (high density power module) which is based on double side liquid cooling of the power semiconductor devices; IML (power mechatronics module), which is based on a lead-frame technology; and SiC-PEBB inverter (silicon carbide semiconductor JFET devices instead of Si devices). WP5 develops a control unit for high-temperature control electronics for the SiC-PEBBs. Finally WP6 works on integrating the new technologies invented in HOPE into powertrain systems and carries out a benchmark tests. All the results achieved in HOPE will be discussed intensively with the proposed Integrated Project HYSIS where the integration work will take place. It is clear from the start that many innovations are necessary to meet the overall goal.

B 2: Lateral water flow and transport of agrochemicals - Phase 1

Das Projekt "B 2: Lateral water flow and transport of agrochemicals - Phase 1" wird vom Umweltbundesamt gefördert und von Universität Hohenheim, Institut für Bodenkunde und Standortslehre durchgeführt. The project aims at developing a model of the dynamics of agrochemicals (fertilisers, pesticides) and selected heavy metals on a regional scale as a function of cropping intensity in the highland areas of Northern Thailand. The model shall predict the effects of cropping intensity on mobility and leaching of agrochemicals in the agriculturally used system itself but also on the chemical status of neighbouring ecosystems including downstream areas. The methods for measuring and estimating the fluxes of agrochemicals in soils will be adapted to the conditions of the soils and sites in Northern Thailand. Fluxes of agrochemicals will be measured in fruit tree orchards on the experimental sites established together with projects B1, C1 and D1. Also, processes governing the dynamics of agrochemicals will be studied. The objectives for the first phase are as follows: - To identify suitable study sites - To establish the methods for measuring the fluxes of agrochemicals in the study sites - To adopt the analytical procedures for pesticides - To identify and parametrise the processes governing the mobility of agrochemicals - To identify the major chemical transformation processes for agrochemicals in the soils of the project area - To establish models of the fate of agrochemicals an the plot scale. Dynamics of agrochemicals include processes of mobilisation/immobilisation, degradation and transport. Both, experiments and field inventories are needed to elucidate the complex interaction of the various processes. Field measurements of the fluxes of nutrient elements (N, P, K, Ca, Mg, Mn, Zn, Cu), pesticides and some heavy metals will be conducted at different regional scales (plot, agricultural system, small catchment, region). Laboratory and field experiments consider chemical, physicochemical and biological processes. Biological processes and degradation of pesticides will not be considered in the first phase of the project, however, they should be included later on. The project as a whole is broken down into three essential parts, which consecutively follow each other. The subproject is methods- and processes-orientated. Methods, which were developed in Hohenheim to quantify the fluxes of chemicals in soils have to be adapted to meet the requirements of the specific conditions in the study area. Recently, these methods are already under development in tropical environments (Vietnam, Costa Rica). After adaptation the methods will be used to yield flux data on the plot scale. These data are needed to help deciding which of the hypothesised processes are of major importance for modelling the dynamics of agrochemicals. The final outcome of this project phase are models of the fate of agrochemicals as a function of management intensity on the plot scale.

Fuel cell power trains and clustering in heavy-duty transports (FELICITAS)

Das Projekt "Fuel cell power trains and clustering in heavy-duty transports (FELICITAS)" wird vom Umweltbundesamt gefördert und von Fraunhofer-Institut für Verkehrs- und Infrastruktursysteme IVI durchgeführt. Objective: The FELICITAS consortium proposes an Integrated Project to develop fuel cell (FC) drive trains fuelled with both hydrocarbons and hydrogen. The proposed development work focuses on producing FC systems capable of meeting the exacting demands of heavy-dut y transport for road, rail and marine applications. These systems will be: - Highly efficient, above 60Prozent - Power dense, - Powerful units of 200kW plus, - Durable, robust and reliable. Two of the FC technologies most suitable for heavy-duty transport applic ations are Polymer Electrolyte FuelCells (PEFC) and Solid Oxide Fuel Cells (SOFC). Currently neither technology is capable of meeting the wideranging needs of heavy-duty transport either because of low efficiencies, PEFC, or poor transient performance,SO FC. FELICITAS proposes the development of high power Fuel Cell Clusters (FCC) that group FC systems with other technologies, including batteries, thermal energy and energy recuperation.The FELICITAS consortium will first undertake the definition of the requirements on FC power trains for the different heavy-duty transport modes. This will lead to the development of FC power train concepts, which through the use of advanced multiple simulations, will undertake evaluations of technical parameters, reliab ility and life cycle costs. Alongside the development of appropriate FC power trains the consortium will undertake fundamental research to adapt and improve existing FC and other technologies, including gas turbines, diesel reforming and sensor systems f or their successful deployment in the demanding heavy-duty transport modes. This research work will combine with the FC power trains design and simulation work to provide improved components and systems, together with prototypes and field testing where ap propriate.The FELICITAS consortium approach will substantially improve European FC and associated technology knowledae and know-how in the field of heavv-duty transport.

SP 1.4 Evaluation of nutrient and pollutant cycles of livestock production systems and manure management systems in the North China Plain

Das Projekt "SP 1.4 Evaluation of nutrient and pollutant cycles of livestock production systems and manure management systems in the North China Plain" wird vom Umweltbundesamt gefördert und von Universität Hohenheim, Institut für Agrartechnik, Fachgebiet Verfahrenstechnik der Tierhaltungssysteme (440b) durchgeführt. The increasing specialization and intensification of the agricultural food production in the North China Plain is leading to restrictions in nutrients and production cycles at farm and regional levels. As a result, livestock production in the North China Plain is entailing serious environmental negative impacts related to manure surpluses and recycling of nutrients, mainly leading to problems associated with water, soil and air pollution. On the other side higher nutrient demands in the local crops is leading to the purchase of chemical or mineral fertilizers when local or on-farm nutrients are not available. Therefore, the efficient use of organic fertilizers not only depends on their availability in the farms, but also on their nutritional composition. Likewise, soil nutrient requirements and plant physiological needs have to be taken into consideration. Indeed, the closer the nutrient cycles and the lower the environmental negative impacts and farm losses are, the greater the chances for a more sustainable resource use in the North China Plain. In the context of the IRTG, aspects of livestock farming in production systems in terms of widely closed nutrients cycles will be integrated. The material flows in different animal husbandry systems will be analysed and the environmental impacts dependent on livestock farming techniques, farms operability and their respective management will be investigated. The applicability and effectiveness of the technical and organizational measures for the reduction of material losses and, the environmental burdens caused by livestock and manure mismanagement in the North China Plain will be reviewed. The benefits and profits for the local cropping systems as result of the application of organic fertilizers originated from livestock farming will be both, ecologically and economically, evaluated as an alternative to replace the use of mineral fertilizers.

A European Tracking System für Electricity - Phase II (E-Track II)

Das Projekt "A European Tracking System für Electricity - Phase II (E-Track II)" wird vom Umweltbundesamt gefördert und von Öko-Institut. Institut für angewandte Ökologie e.V. durchgeführt. *Phase II of the project will refine the proposed tracking standard, by integrating the new Guarantees of Origin for cogeneration, the implementation of which was due in 2007. A focus on the specific requirements from new Member States will be made. Furthermore, consumer organisations will be supported in defining their requirements on tracking systems and the related policies, and the views of non-domestic consumer groups will be sought. Finally, the action will develop a strategy for the further development of energy-related certification schemes and their potential integration. With Directives 96/02/EC and 2003/54/EC, the EU has introduced liberalisation of the electricity markets in its Member States and has created the framework for an internal European market for electricity. Directives 2001/77/EC and 2004/8/EC contain regulations on Guarantees of Origin, which serve to enable producers to demonstrate that the electricity they sell is produced from renewable energy sources or high efficiency cogeneration. Directive 2003/54/EC requires suppliers to provide details about their fuel mix and the respective environmental impact (disclosure). Disclosing a fuel mix or a green power product requires a procedure to track electricity generation attributes , such as fuel type, CO2 emissions etc.. from generators to electricity suppliers and their customers. Support systems for RES electricity and high efficiency cogeneration may require similar allocation systems. Such accounting systems can significantly contribute to transparency for the consumers choice and to improved market functioning. Harmonisation of such tracking schemes across Europe is a keystone for the development of a transparent internal European market for electricity. The E-TRACK project, which was terminated in June 2007, has successfully developed a blueprint for a European tracking standard. Principles of the standard have been taken over by several countries. However, tracking systems used in Europe are still far from being coordinated, and double counting and other errors can occur, which compromises the reliability of information provided to consumers and other actors.

Calcium cycle for efficient and low cost CO2 capture in fluidized bed systems (C3-CAPTURE)

Das Projekt "Calcium cycle for efficient and low cost CO2 capture in fluidized bed systems (C3-CAPTURE)" wird vom Umweltbundesamt gefördert und von Universität Stuttgart, Fakultät für Energietechnik, Institut für Verfahrenstechnik und Dampfkesselwesen durchgeführt. Objectives: The project aims on developing a dry CO2 capture system for atmospheric and pressurized fluidized bed boilers. The atmospheric option will be developed towards a pilot plant application. For the pressurized option the project seeks for a proof of principle to determine if the advantages of a pressurized capture system can balance the problems known from existing PFBC systems. The quantifiable objectives are: - Low CO2 capture costs (less than 20 Euro/t for atmospheric, less than 12 Euro/t for pressurized sy stems) - Acceptable efficiency penalty for CO2 capture (less than about equal to 6 percent nel). - greater than 90 percent carbon capture for new power plants and greater than 60 percent for retrofitted existing plants - A purge gas stream containing greater than 95 percent CO2 - A solid purge usable for cement production - Sim ultaneous sulphur and CO2 removal with sulphur recovery option Approach: Limestone is a CO2 carrier. The CO2 can be released easily in a conventional calcination process, well known in the cement and lime industry. By integrating a closed carbonation/calc ination loop in the flue gas of a conventional CFB-boiler, the CO2 in the flue gas can be removed. The heat required for calcination is released during carbonation and can be utilised efficiently (high temperature) in the steam cycle of the boiler. Concent rated CO2 can be generated when using oxygen blown calcination. Because the fuel required for supplying heat for calcination is only a fraction of the total fuel requirements, the required oxygen is only about 1/3 of the oxygen required for oxyfuel process es. The work programme: 1.Definition of the technical and economic boundary conditions 2.Selection and improvement of sorbent materials 3.Lab scale and semi-technical scale process development (experimental work) 4.Technical and economic evaluation 5.Des ign of a 1 MWth Pilot plant.

Ad hoc Beratung bei der Umsetzung der Monitoring Verordnung für die 4. Phase des EU Emissionshandels - Schwerpunkt: Regelungen zu Biomasse

Das Projekt "Ad hoc Beratung bei der Umsetzung der Monitoring Verordnung für die 4. Phase des EU Emissionshandels - Schwerpunkt: Regelungen zu Biomasse" wird vom Umweltbundesamt gefördert und von TÜV SÜD Industrie Service GmbH durchgeführt. Die Emissionshandelsrichtlinie bildet die Grundlage für den europäischen Emissionshandel. Sie wird in Deutschland durch das Treibhausgas Emissionshandelsgesetz (TEHG) in nationales Recht umgesetzt. § 6 Absatz 2 Satz 2 TEHG nimmt Bezug auf die Monitoring Verordnung (MVO). In dieser sind die wesentlichen Regelungen zur Emissionsüberwachung und berichterstattung festgelegt, unter anderem auch Regelungen zum Einsatz von Biomasse. Die überarbeitete EU Richtlinie für Erneuerbare Energien (RED II) hat Auswirkungen auf die Regelungen und den Vollzug der in 2021 beginnenden vierten Phase des europäischen Emissionshandelssystems. Ziel des Gutachtens ist, das Umweltbundesamt beider Auslegung der betreffenden Passagen des Rechtstextes und der Identifizierung der sich daraus ergebenden Nachweisführung für Treibhausgaseinsparung bzw. Nachhaltigkeit beim Einsatz von Biomasse zu unterstützen. Aus den Ergebnissen wird das Umweltbundesamt Konkretisierungsbedarf für die europäische und nationale Gesetzgebung als auch praktische Umsetzungshinweise zum Einsatz von Biomasse im Emissionshandel ableiten.

1 2 3 4 512 13 14