Anzahl der Proben: 69 Gemessener Parameter: Speicherform für Fettsäuren und Maß für verschiedene Erkrankungen sowie das Risiko für Thrombose und Gefäßverkalkung Probenart: Blutplasma Ideale Matrix für die meisten Chemikalien, da es im Kontakt mit dem gesamten Organismus und im Gleichgewicht mit den Organen und Geweben steht, in denen Chemikalien gespeichert werden Probenahmegebiet: Ulm Kleine Universitätsstadt in Süddeutschland an der Donau.
Anzahl der Proben: 75 Gemessener Parameter: Speicherform für Fettsäuren und Maß für verschiedene Erkrankungen sowie das Risiko für Thrombose und Gefäßverkalkung Probenart: Blutplasma Ideale Matrix für die meisten Chemikalien, da es im Kontakt mit dem gesamten Organismus und im Gleichgewicht mit den Organen und Geweben steht, in denen Chemikalien gespeichert werden Probenahmegebiet: Greifswald Hanse- und Universitätsstadt in einer dünn besiedelter Region im Nordosten Mecklenburg-Vorpommerns.
Anzahl der Proben: 90 Gemessener Parameter: Speicherform für Fettsäuren und Maß für verschiedene Erkrankungen sowie das Risiko für Thrombose und Gefäßverkalkung Probenart: Blutplasma Ideale Matrix für die meisten Chemikalien, da es im Kontakt mit dem gesamten Organismus und im Gleichgewicht mit den Organen und Geweben steht, in denen Chemikalien gespeichert werden Probenahmegebiet: Münster Bedeutende Universitätsstadt sowie Dienstleistungs- und Verwaltungszentrum in Nordrhein-Westfalen.
Anzahl der Proben: 75 Gemessener Parameter: Speicherform für Fettsäuren und Maß für verschiedene Erkrankungen sowie das Risiko für Thrombose und Gefäßverkalkung Probenart: Blutplasma Ideale Matrix für die meisten Chemikalien, da es im Kontakt mit dem gesamten Organismus und im Gleichgewicht mit den Organen und Geweben steht, in denen Chemikalien gespeichert werden Probenahmegebiet: Halle/Saale Größte Stadt in Sachsen-Anhalt und alter Industriestandort in der ehemaligen DDR mit starkem Strukturwandel seit 1990.
technologyComment of ammonia production, steam reforming, liquid (RER w/o RU): This datasets corresponds to the technology used in European ammonia plants with natural gas based fuel and feedstock. The most efficient way of ammonia synthesis gas production is natural gas reforming with steam and air. The ammonia production process consists of several steps: desulphurization, primary production, secondary reforming, shift conversion, CO2 removal, methanation, synthesis gas compression and ammonia synthesis. technologyComment of ammonia production, steam reforming, liquid (RU): This datasets corresponds to the technology used in Russian ammonia plants with natural gas based fuel and feedstock. The most efficient way of ammonia synthesis gas production is natural gas reforming with steam and air. The ammonia production process consists of several steps: desulphurization, primary production, secondary reforming, shift conversion, CO2 removal, methanation, synthesis gas compression and ammonia synthesis. technologyComment of cocamide diethanolamine production (RER): Cocamide diethanolamine can be produced from different reaction of diethanolamine with methyl cocoate, coconut oil, whole coconut acids, stripped coconut fatty acids. Cocamide diethanolamine is modelled here as the 1:1 reaction of coconut oil and diethanolamine. The reaction occurs at a maximum temperature of 170 degrees Celcius with the aid of an alkaline catalyst. The catalyst in not consider significant in terms of emissions for the reaction and it is therefore not included in this dataset and it is assumed to be taken into consideration in the input of chemical factory. The production process can also be a 1:2 fatty acids reaction. This results in a lower quality product with output of free diethanolamine and ethylene glycol (Elbers 2013). Coconut oil composition varies, here it assumed an average composition CH3(CH2)12CONH2. This inventory representing production of a particular chemical compound is at least partially based on a generic model on the production of chemicals. The data generated by this model have been improved by compound-specific data when available. The model on production of chemicals is using specific industry or literature data wherever possible and more generic data on chemical production processes to fill compound-specific data gaps when necessary. The basic principles of the model have been published in literature (Hischier 2005, Establishing Life Cycle Inventories of Chemicals Based on Differing Data Availability). The model has been updated and extended with newly available data from the chemical industry. In the model, unreacted fractions are treated in a waste treatment process, and emissions reported are after a waste treatment process that is included in the scope of this dataset. For volatile reactants, a small level of evaporation is assumed. Solvents and catalysts are mostly recycled in closed-loop systems within the scope of the dataset and reported flows are for losses from this system. The main source of information for the values for heat, electricity, water (process and cooling), nitrogen, chemical factory is industry data from Gendorf. The values are a 5-year average of data (2011 - 2015) published by the Gendorf factory (Gendorf, 2016, Umwelterklärung, www.gendorf.de), (Gendorf, 2015, Umwelterklärung, www.gendorf.de), (Gendorf, 2014, Umwelterklärung, www.gendorf.de). The Gendorf factory is based in Germany, it produces a wide range of chemical substances. The factory produced 1657400 tonnes of chemical substances in the year 2015 (Gendorf, 2016, Umwelterklärung, www.gendorf.de) and 740000 tonnes of intermediate products. Reference(s): Hischier, R. (2005) Establishing Life Cycle Inventories of Chemicals Based on Differing Data Availability (9 pp). The International Journal of Life Cycle Assessment, Volume 10, Issue 1, pp 59–67. 10.1065/lca2004.10.181.7 Gendorf (2016) Umwelterklärung 2015, Werk Gendorf Industriepark, www.gendorf.de Elbers, E. 2013. Some Chemicals Present in Industrial and Consumer Products, Food and Drinking-water. In IARC MONOGRAPHS ON THE EVALUATION OF CARCINOGENIC RISKS TO HUMANS, Vol.101, pp.141-148 WHO Press, Geneva. For more information on the model please refer to the dedicate ecoinvent report, access it in the Report section of ecoQuery (http://www.ecoinvent.org/login-databases.html)
Triglyzeride Triacylglycerine Triglyceride Glycerol-Triester Erläuterung: Speicherform für Fettsäuren und Maß für verschiedene Erkrankungen sowie das Risiko für Thrombose und Gefäßverkalkung
Pflanzliche Öle werden als energiereiche Reservestoffe in Speicherorgane von Pflanzen eingelagert. Sie sind chemisch gesehen Ester aus Glycerin und drei Fettsäuren. In Deutschland konzentriert sich der Ölsaatenanbau auf Raps, Sonnenblume und Lein. Im Freistaat Sachsen dominiert auf Grund der Standortbedingungen und vor allem der Wirtschaftlichkeit eindeutig der Raps. Der maximal mögliche Anbauumfang von Raps liegt aus anbautechnischer Sicht bei 25 % der Ackerfläche und ist noch nicht ausgeschöpft (Sachsen 2004: 17 %). Für den landwirtschaftlichen Anbau kommen eine Reihe weiterer ölliefernder Pflanzenarten oder spezieller Sorten in Betracht. Interessant sind sie aus der Sicht der Verwertung insbesondere, wenn sie hohe Gehalte einzelner spezieller Fettsäuren aufweisen. Bei der Verarbeitung können dann aufwändige Aufbereitungs- und Trennprozesse eingespart und die Synthesevorleistung der Natur optimal genutzt werden. Der Anbauumfang ist jedoch meist noch sehr gering. Beispiele sind Nachtkerze und Iberischer Drachenkopf, aber auch Erucaraps und ölsäurereiche Sonnenblumensorten. a) stoffliche Verwertung In der stofflichen Verwertung reichen die Einsatzfelder pflanzlicher Öle von biologisch schnell abbaubaren Schmierstoffen, Lacken und Farben, über Tenside, Kosmetika, Wachse bis zu Grundchemikalien, aber auch Bitumen. b) energetische Verwertung Desweiteren können Pflanzenöle in Fahrzeugen, stationären oder mobilen Anlagen energetisch verwertet werden. Für den breiten Einsatz ist derzeit vor allem Biodiesel geeignet. Dieser kommt als reiner Kraftstoff zum Einsatz, seit 2004 auch in Beimischung zu Dieselkraftstoff. Eine weitere Möglichkeit eröffnet sich durch die Verwendung von reinem Rapsöl.
Das Projekt "AbiRec" wird vom Umweltbundesamt gefördert und von Institut für Holztechnologie Dresden gemeinnützige GmbH durchgeführt. Ziel des Projektes ist die Entwicklung eines Verfahrens für die stoffliche Nutzung von Alt-Holzwerkstoffen. Als Modellwerkstoff soll MDF dienen, die meist überwiegend aus Nadelholzfasern besteht. MDF enthalten neben den Fasern Harz- und Fettsäuren, die auch im Sekundärweg Rohstoffe für die Farben- und Lackindustrie sind. Daher wird ein synergetisches Verfahren zur Faserrückgewinnung und C02-basierten Extraktion solcher Holzinhaltsstoffe etabliert. Dies soll Wertstoffkreislauf weiter schließen.
Das Projekt "Nematodes as link between microbial and faunal food web" wird vom Umweltbundesamt gefördert und von Universität Berlin (Humboldt-Univ.), Institut für Biologie, Arbeitsgruppe Ökologie durchgeführt. The proposed project examines the nematode fauna at the two field experiments 'Long-term recalcitrant C input' and 'Carbon flow via the herbivore and detrital food chain'. A gradient from resource rich to deeper oligotrophe habitats, i.e. from high to low diverse food webs, is investigated. The impact of resource availability and quality (recalcitrant versus labile) and presence or absence of living plants (rhizosphere versus detritusphere) on the nematode population are assessed. Insight into micro-food web structure is gained by application of the nematode faunal analysis concept, based on the enrichment, structure and channel index. In laboratory model systems carbon flux rates for food web links are determined between bacteria/fungi and their nematode grazers for dominant taxa in the arable field. Further, carbon leakage from plant roots induced by herbivore nematode is studied as link between root and bacterial energy channels. By using 13C/12C stable isotope probing (FA-SIP) fatty acids serve as major carbon currency. Coupling qualitative and quantitative data on nematode field populations, with carbon flow via biomarker fatty acids in microorganisms and grazers will allow to connect microbial and faunal food web, and to directly link nematode functional groups with specific processes in the soil carbon cycle.
Das Projekt "Use of rape as domestic and engine fuel substitute, fertiliser and cattle feed" wird vom Umweltbundesamt gefördert und von Gesellschaft für Entwicklungstechnologie durchgeführt. Objective: To use rape oil and straw as a substitute for diesel fuel for domestic and drying requirements, as fertiliser and a cattle feed. General Information: This project uses the rape produced from an area of 40 ha. Rape straw (150 to 200 t/y) will be pelletized and/or briquetted to obtain a fuel usable in an automatic loading combustion plant. The rape oil (4,000 l) obtained by a double screwpress will be used to fuel two different engines. After purification some will be used in a modified tractor engine, the remainder, after ethyl/methyl esterification, in a conventional diesel engine. Residual straw (30 to 200 t) will be ploughed-in for soil improvement while the high oil content (70 to 75 t) rape cake will be used as cattle feed. The oil extraction is made by use of a double screw press from Monforts + Reiners Co. The press is fed directly from the seed store. The oil flows with the pressing temperature of 60 deg. C. to settling tanks. The residues are passed back to the filling funnels. The oil passing through a 10 mu filter and is stored in the filling station for later use, either directly in the rape-oil tractor, or for transesterification. The rape meal (expeller cake) is automatically transported to a silo which is cleared regularly by the transporter of the animal feed mill. A small scale transesterification unit is being developed for on-farm operation. The use of new kinds of catalysts with long duration stability and a high degree of automatic operation and control of process parameters allows for operation of the chemical process by agrotechnologists without a special formation. The unit is designed for optimum process performance, high product quality, minimum energy requirements and high reliability of the equipment. The preceeding transesterification for the free acids with an acidic catalysts is continuous and is double batch for the basic catalytic step for transesterification of the triglycerides. A separation and wash-out step guarantees the quality of the final products: methylester as diesel fuel and glycerol for the chemical industry. The straw-pelletizer unit consists of a chipping unit which reduces the straw-bales into 2 to 5 cm long stalks. These are intermediately stored in a buffer from where they are transferred by a screw-conveyor to the pelletizer, which operates with dentate matrix and rollers. The high-density pellets are fed to a cooler and conveyed to a silo. The electric energy for the unit is generated by a methylester fuelled diesel-generator set.
Origin | Count |
---|---|
Bund | 464 |
Land | 5 |
Type | Count |
---|---|
Förderprogramm | 446 |
Messwerte | 5 |
Text | 8 |
Umweltprüfung | 3 |
unbekannt | 7 |
License | Count |
---|---|
closed | 14 |
open | 448 |
unknown | 7 |
Language | Count |
---|---|
Deutsch | 466 |
Englisch | 67 |
Resource type | Count |
---|---|
Archiv | 1 |
Datei | 5 |
Dokument | 4 |
Keine | 305 |
Webseite | 160 |
Topic | Count |
---|---|
Boden | 350 |
Lebewesen & Lebensräume | 406 |
Luft | 180 |
Mensch & Umwelt | 469 |
Wasser | 200 |
Weitere | 454 |