API src

Found 294 results.

Related terms

Forst\Zweitakter-Antrieb-DE-2000 (Endenergie)

Zweitakter als Antrieb in forstwirtschaftlichen Aggregaten (hier Nutzungsgrad 100%, da Eingabe der Treibstoffverbräuche!). Die Emissionen für CO, NOx, Partikel (hier anderer Flugstaub), HC&Aldehyde (hier NMVOC) wurden angepasst. Es verbleiben geringe Abweichungen bei CO2 und höhere bei SO2. Diese wurden nicht verändert, da stöchiometrisch berechnet. Auslastung: 2500h/a Brenn-/Einsatzstoff: Brennstoffe-fossil-Öl gesicherte Leistung: 100% Jahr: 2000 Lebensdauer: 10a Leistung: 1MW Nutzungsgrad: 100% Produkt: Hilfsenergien

Forst\Zweitakter-Antrieb-DE-2020 (Endenergie)

Zweitakter als Antrieb in forstwirtschaftlichen Aggregaten (hier Nutzungsgrad 100%, da Eingabe der Treibstoffverbräuche!). Die Emissionen für CO, NOx, Partikel (hier anderer Flugstaub), HC&Aldehyde (hier NMVOC) wurden angepasst. Es verbleiben geringe Abweichungen bei CO2 und höhere bei SO2. Diese wurden nicht verändert, da stöchiometrisch berechnet. Auslastung: 2500h/a Brenn-/Einsatzstoff: Brennstoffe-fossil-Öl gesicherte Leistung: 100% Jahr: 2020 Lebensdauer: 10a Leistung: 1MW Nutzungsgrad: 100% Produkt: Hilfsenergien

Forst\Zweitakter-Antrieb-DE-2010 (Endenergie)

Zweitakter als Antrieb in forstwirtschaftlichen Aggregaten (hier Nutzungsgrad 100%, da Eingabe der Treibstoffverbräuche!). Die Emissionen für CO, NOx, Partikel (hier anderer Flugstaub), HC&Aldehyde (hier NMVOC) wurden angepasst. Es verbleiben geringe Abweichungen bei CO2 und höhere bei SO2. Diese wurden nicht verändert, da stöchiometrisch berechnet. Auslastung: 2500h/a Brenn-/Einsatzstoff: Brennstoffe-fossil-Öl gesicherte Leistung: 100% Jahr: 2010 Lebensdauer: 10a Leistung: 1MW Nutzungsgrad: 100% Produkt: Hilfsenergien

Forst\Zweitakter-Antrieb-DE-2030 (Endenergie)

Zweitakter als Antrieb in forstwirtschaftlichen Aggregaten (hier Nutzungsgrad 100%, da Eingabe der Treibstoffverbräuche!). Die Emissionen für CO, NOx, Partikel (hier anderer Flugstaub), HC&Aldehyde (hier NMVOC) wurden angepasst. Es verbleiben geringe Abweichungen bei CO2 und höhere bei SO2. Diese wurden nicht verändert, da stöchiometrisch berechnet. Auslastung: 2500h/a Brenn-/Einsatzstoff: Brennstoffe-fossil-Öl gesicherte Leistung: 100% Jahr: 2030 Lebensdauer: 10a Leistung: 1MW Nutzungsgrad: 100% Produkt: Hilfsenergien

Forst\Zweitakter-Antrieb-US (Endenergie)

Zweitakter als Antrieb in forstwirtschaftlichen Aggregaten (hier Nutzungsgrad 100%, da Eingabe der Treibstoffverbräuche!). Die Emissionen für CO, NOx, Partikel (hier anderer Flugstaub), HC&Aldehyde (hier NMVOC) wurden angepasst. Es verbleiben geringe Abweichungen bei CO2 und höhere bei SO2. Diese wurden nicht verändert, da stöchiometrisch berechnet. Auslastung: 2500h/a Brenn-/Einsatzstoff: Brennstoffe-fossil-Öl gesicherte Leistung: 100% Jahr: 2000 Lebensdauer: 10a Leistung: 1MW Nutzungsgrad: 100% Produkt: Hilfsenergien

Forst\Zweitakter-Antrieb-ID (Endenergie)

Zweitakter als Antrieb in forstwirtschaftlichen Aggregaten (hier Nutzungsgrad 100%, da Eingabe der Treibstoffverbräuche!). Die Emissionen für CO, NOx, Partikel (hier anderer Flugstaub), HC&Aldehyde (hier NMVOC) wurden angepasst. Es verbleiben geringe Abweichungen bei CO2 und höhere bei SO2. Diese wurden nicht verändert, da stöchiometrisch berechnet. Auslastung: 2500h/a Brenn-/Einsatzstoff: Brennstoffe-fossil-Öl gesicherte Leistung: 100% Jahr: 2000 Lebensdauer: 10a Leistung: 1MW Nutzungsgrad: 100% Produkt: Hilfsenergien

Xtra-Rest\Flugasche

Steinkohleflugasche als Zementersatzstoff, Daten nach #1 geschätzt. Auslastung: 5000h/a Brenn-/Einsatzstoff: Baustoffe gesicherte Leistung: 100% Jahr: 2000 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 100% Produkt: Baustoffe

Metall\Kupfer-DE-sekundär-2020

Verhüttung und Raffination Sekundärkupfer; Als Sekundärkupfer wird das Reinmetall verstanden, das aus Sekundärrohstoffen gewonnen wird. Diese können metallischer Art sein (Kupfer, Messing-, Bronze- und Rotgußschrotte) oder aus kupferhaltigen Zwischen- und Abprodukten wie Schlämmen, Krätzen und Schlacken bestehen. Eine mittlere Zusammensetzung der Materialien kann aufgrund der enormen Heterogenität nicht angegeben werden (#1). In GEMIS wird die Sekundärkupfer-Herstellung auf pyrometallurgischem Wege bilanziert. Überwiegend wird dazu das sogenannte Schachtofen-Konverter-Verfahren angewendet (#1). Metallisches Einsatzmaterial wird dabei im Konverter oder Anodenofen eingesetzt, die sonstigen sekundären Rohstoffe werden zusammen mit den Schlacken im Schachtofen oder Elektroofen unter reduzierenden Bedingungen eingeschmolzen. Die Weiterverarbeitung läuft dann wie auch beim Primärkupfer. Die bilanzierte Prozesskette sowie die daraus generierten Daten gelten für Deutschland im Bilanzzeitraum von 1992-1994. Es werden ca. 40 % des in Deutschland verbrauchten Kupfers aus Sekundärmaterialien gewonnen (#1). Im internationalen Vergleich weisen die Daten einen sehr geringen Energiebedarf, sehr geringe Emissionswerte durch die hohen bundesdeutschen Emissionsstandards und auch geringe Reststoffmengen auf. Verglichen mit Daten anderer Konvenienz muß mit erheblichen Unterschieden gerechnet werden, die aber in der vorliegenden Studie nicht berücksichtigt werden können. Ergänzend zu der hier vorliegenden Bilanz sei auf die Arbeiten der Bundesanstalten für Geowissenschaften und Rohstoffe (BGR) verwiesen („Stoffmengenflüsse und Energiebedarf bei der Gewinnung ausgewählter mineralischer Rohstoffe, Maßnahmeempfehlungen für eine umweltschonende nachhaltige Entwicklung“) in deren Rahmen auch die weltweite Kupfererzeugung bilanziert wird. Weiterhin wird auf die Arbeiten der ETH-Zürich verwiesen, die eine Abschätzung mit geringerem lokalen Bezug vorgenommen haben (ETH 1995). Ein direkter Vergleich der Arbeit der RWTH Aachen, die dieser Bilanzierung zugrundeliegt mit anderen Arbeiten ist im Rahmen von GEMIS nicht durchführbar. Die RWTH Aachen behält sich einen Vergleich zu einem späteren Zeitpunkt vor (Bruch 1995). In Deutschland sind drei Schmelz- und Raffinierhüttenbetriebe an der Verarbeitung beteiligt (#1). Allokation: Als Kuppelprodukte dieser Prozeß-Einheit entstehen Schwefelsäure und Anodenschlämme sowie Nickelsulfat. Für die Schwefelsäure wird dem Prozeß eine massenbezogene Gutschrift über die Primärherstellung der Schwefelsäure gewährt. Für die Anodenschlämme, die andere NE-Metalle und auch Edelmetalle enthalten wird im Rahmen dieser Studie keine Gutschrift vergeben, da über die Zusammensetzung des Anodenschlamms keine Informationen vorliegen. Auch für Nickelsulfat wird weitergehender Informationen keine Allokation vorgenommen. Daher werden sowohl die Anodenschlämme als auch das Nickelsulfat als Reststoffe mitgeführt. Die Schlacke wird im Rahmen von GEMIS nicht als Kuppelprodukt sondern als Reststoff bilanziert. Eine Allokation wird daher nicht vorgenommen. Sowohl für die Schrotte, deren Herkunft und Zusammensetzung anhand der vorliegenden Daten nicht zu beurteilen ist, als auch für die weiteren Sekundärmaterialien werden zur Bereitstellung für den Prozeß die Transportaufwendungen bilanziert. Eine weitergehende Aufbereitung wird ihnen nicht angelastet. Genese der Kennziffern: Massenbilanz: Bezogen auf eine Tonne Reinmetall aus der Verarbeitung sekundärer Rohstoffe müssen nach #1 rund 1040 kg Schrotte und 580 kg sonstige Sekundärrohstoffe eingesetzt werden (Schrotte und weitere Sekundärrohstoffe werden in GEMIS summarisch betrachtet). Als Kuppelprodukte entstehen nach #1 pro Tonne Kathodenkupfer 10 kg Anodenschlamm und 20 kg Nickelsulfat. Sie werden wie oben beschrieben in GEMIS als Reststoffe mitbilanziert. Eine nachgeschaltete Schwefelsäureproduktion ist nicht notwendig. Durch diese fehlende Stufe in der Rauchgasreinigung werden aber höhere Anforderungen an den Input hinsichtlich des Quecksilber- und Schwefelgehaltes gestellt. Wie bei der Primärkupfererzeugung wird auch hier die Schlackenmenge von 530 kg/t Reinmetall als Reststoff bilanziert. Energiebedarf: Disaggregierte Daten für die einzelnen Prozeßschritte innerhalb der Prozeßeinheit liegen nicht vor. Der Energiebedarf ist über den gesamten Prozess aggregiert. Er setzt sich zusammen aus dem Brennstoffbedarf und dem elektrischen Energiebedarf. Als Brennstoff im Prozess wird Steinkohlenkoks angenommen (#1). Summarisch müssen nach #1 damit 9,2 GJ/t bereitgestellt werden. Diese werden direkt in den Prozessen und nicht in Kesseln in Prozesswärme umgesetzt. Neben dem Brennstoffbedarf besteht ein Strombedarf von 3,8 GJ/t. Der Strombedarf wird über das elektrische Netz (Grundlast) bereitgestellt. Prozessbedingte Luftemissionen: Für die Darstellung der prozessbedingten Luftemissionen ist wichtig, daß die Brennstoffe unter prozessspezifischen Bedingungen direkt in den Prozess eingesetzt werden. Daher können die Emissionen in GEMIS nicht über eine Verbrennungsrechnung bestimmt werden. Daher werden die Daten aus #1 und #2 übernommen, die über Messungen in den Betrieben ermittelt wurden . Die einzelnen Werte sind in der folgenden Tabelle dargestellt: Tab.: Emission von Luftschadstoffen bei der Verhüttung und der Raffination von Sekundärkupfer durch den Einsatz von Brennstoffen (#1). Schadstoff Menge in kg/t Reinmetall NOx 1,96 SO2 3,92 Staub 0,21 CO2 1230 CO 3,08 HC 0 Wasserinanspruchnahme: Zur Wasserinanspruchnahme dieses Prozesses liegen keine Informationen vor. Eine fehlende Angabe ist hier allerdings nicht als nicht existierende Wasserinanspruchnahme zu werten. Abwasserinhaltsstoffe: Wie zur Wasserinanspruchnahme liegen auch zur Abwasserbilanz nur unzureichende Werte vor. Es wird eine Abwassermenge von <1 m³/t Produkt bilanziert (#1). Angaben zu den Abwasserinhaltstoffen wurden wegen der als gering abgeschätzten Relevanz nicht erhoben (#2). Reststoffe: Zusätzlich zu den bereits im Rahmen der Massenbilanz erwähnten Reststoffen fallen weiterhin 120 kg/t Reinmetall Flugstäube an (#1). Damit wird insgesamt eine Reststoffmenge von 680 kg/t Reinmetall bilanziert. Auslastung: 5000h/a Brenn-/Einsatzstoff: Recyclate gesicherte Leistung: 100% Jahr: 2020 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 61,7% Produkt: Metalle - NE

Metall\Kupfer-DE-sekundär-2000

Verhüttung und Raffination Sekundärkupfer; Als Sekundärkupfer wird das Reinmetall verstanden, das aus Sekundärrohstoffen gewonnen wird. Diese können metallischer Art sein (Kupfer, Messing-, Bronze- und Rotgußschrotte) oder aus kupferhaltigen Zwischen- und Abprodukten wie Schlämmen, Krätzen und Schlacken bestehen. Eine mittlere Zusammensetzung der Materialien kann aufgrund der enormen Heterogenität nicht angegeben werden (#1). In GEMIS wird die Sekundärkupfer-Herstellung auf pyrometallurgischem Wege bilanziert. Überwiegend wird dazu das sogenannte Schachtofen-Konverter-Verfahren angewendet (#1). Metallisches Einsatzmaterial wird dabei im Konverter oder Anodenofen eingesetzt, die sonstigen sekundären Rohstoffe werden zusammen mit den Schlacken im Schachtofen oder Elektroofen unter reduzierenden Bedingungen eingeschmolzen. Die Weiterverarbeitung läuft dann wie auch beim Primärkupfer. Die bilanzierte Prozesskette sowie die daraus generierten Daten gelten für Deutschland im Bilanzzeitraum von 1992-1994. Es werden ca. 40 % des in Deutschland verbrauchten Kupfers aus Sekundärmaterialien gewonnen (#1). Im internationalen Vergleich weisen die Daten einen sehr geringen Energiebedarf, sehr geringe Emissionswerte durch die hohen bundesdeutschen Emissionsstandards und auch geringe Reststoffmengen auf. Verglichen mit Daten anderer Konvenienz muß mit erheblichen Unterschieden gerechnet werden, die aber in der vorliegenden Studie nicht berücksichtigt werden können. Ergänzend zu der hier vorliegenden Bilanz sei auf die Arbeiten der Bundesanstalten für Geowissenschaften und Rohstoffe (BGR) verwiesen („Stoffmengenflüsse und Energiebedarf bei der Gewinnung ausgewählter mineralischer Rohstoffe, Maßnahmeempfehlungen für eine umweltschonende nachhaltige Entwicklung“) in deren Rahmen auch die weltweite Kupfererzeugung bilanziert wird. Weiterhin wird auf die Arbeiten der ETH-Zürich verwiesen, die eine Abschätzung mit geringerem lokalen Bezug vorgenommen haben (ETH 1995). Ein direkter Vergleich der Arbeit der RWTH Aachen, die dieser Bilanzierung zugrundeliegt mit anderen Arbeiten ist im Rahmen von GEMIS nicht durchführbar. Die RWTH Aachen behält sich einen Vergleich zu einem späteren Zeitpunkt vor (Bruch 1995). In Deutschland sind drei Schmelz- und Raffinierhüttenbetriebe an der Verarbeitung beteiligt (#1). Allokation: Als Kuppelprodukte dieser Prozeß-Einheit entstehen Schwefelsäure und Anodenschlämme sowie Nickelsulfat. Für die Schwefelsäure wird dem Prozeß eine massenbezogene Gutschrift über die Primärherstellung der Schwefelsäure gewährt. Für die Anodenschlämme, die andere NE-Metalle und auch Edelmetalle enthalten wird im Rahmen dieser Studie keine Gutschrift vergeben, da über die Zusammensetzung des Anodenschlamms keine Informationen vorliegen. Auch für Nickelsulfat wird weitergehender Informationen keine Allokation vorgenommen. Daher werden sowohl die Anodenschlämme als auch das Nickelsulfat als Reststoffe mitgeführt. Die Schlacke wird im Rahmen von GEMIS nicht als Kuppelprodukt sondern als Reststoff bilanziert. Eine Allokation wird daher nicht vorgenommen. Sowohl für die Schrotte, deren Herkunft und Zusammensetzung anhand der vorliegenden Daten nicht zu beurteilen ist, als auch für die weiteren Sekundärmaterialien werden zur Bereitstellung für den Prozeß die Transportaufwendungen bilanziert. Eine weitergehende Aufbereitung wird ihnen nicht angelastet. Genese der Kennziffern: Massenbilanz: Bezogen auf eine Tonne Reinmetall aus der Verarbeitung sekundärer Rohstoffe müssen nach #1 rund 1040 kg Schrotte und 580 kg sonstige Sekundärrohstoffe eingesetzt werden (Schrotte und weitere Sekundärrohstoffe werden in GEMIS summarisch betrachtet). Als Kuppelprodukte entstehen nach #1 pro Tonne Kathodenkupfer 10 kg Anodenschlamm und 20 kg Nickelsulfat. Sie werden wie oben beschrieben in GEMIS als Reststoffe mitbilanziert. Eine nachgeschaltete Schwefelsäureproduktion ist nicht notwendig. Durch diese fehlende Stufe in der Rauchgasreinigung werden aber höhere Anforderungen an den Input hinsichtlich des Quecksilber- und Schwefelgehaltes gestellt. Wie bei der Primärkupfererzeugung wird auch hier die Schlackenmenge von 530 kg/t Reinmetall als Reststoff bilanziert. Energiebedarf: Disaggregierte Daten für die einzelnen Prozeßschritte innerhalb der Prozeßeinheit liegen nicht vor. Der Energiebedarf ist über den gesamten Prozess aggregiert. Er setzt sich zusammen aus dem Brennstoffbedarf und dem elektrischen Energiebedarf. Als Brennstoff im Prozess wird Steinkohlenkoks angenommen (#1). Summarisch müssen nach #1 damit 9,2 GJ/t bereitgestellt werden. Diese werden direkt in den Prozessen und nicht in Kesseln in Prozesswärme umgesetzt. Neben dem Brennstoffbedarf besteht ein Strombedarf von 3,8 GJ/t. Der Strombedarf wird über das elektrische Netz (Grundlast) bereitgestellt. Prozessbedingte Luftemissionen: Für die Darstellung der prozessbedingten Luftemissionen ist wichtig, daß die Brennstoffe unter prozessspezifischen Bedingungen direkt in den Prozess eingesetzt werden. Daher können die Emissionen in GEMIS nicht über eine Verbrennungsrechnung bestimmt werden. Daher werden die Daten aus #1 und #2 übernommen, die über Messungen in den Betrieben ermittelt wurden . Die einzelnen Werte sind in der folgenden Tabelle dargestellt: Tab.: Emission von Luftschadstoffen bei der Verhüttung und der Raffination von Sekundärkupfer durch den Einsatz von Brennstoffen (#1). Schadstoff Menge in kg/t Reinmetall NOx 1,96 SO2 3,92 Staub 0,21 CO2 1230 CO 3,08 HC 0 Wasserinanspruchnahme: Zur Wasserinanspruchnahme dieses Prozesses liegen keine Informationen vor. Eine fehlende Angabe ist hier allerdings nicht als nicht existierende Wasserinanspruchnahme zu werten. Abwasserinhaltsstoffe: Wie zur Wasserinanspruchnahme liegen auch zur Abwasserbilanz nur unzureichende Werte vor. Es wird eine Abwassermenge von <1 m³/t Produkt bilanziert (#1). Angaben zu den Abwasserinhaltstoffen wurden wegen der als gering abgeschätzten Relevanz nicht erhoben (#2). Reststoffe: Zusätzlich zu den bereits im Rahmen der Massenbilanz erwähnten Reststoffen fallen weiterhin 120 kg/t Reinmetall Flugstäube an (#1). Damit wird insgesamt eine Reststoffmenge von 680 kg/t Reinmetall bilanziert. Auslastung: 5000h/a Brenn-/Einsatzstoff: Recyclate gesicherte Leistung: 100% Jahr: 2000 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 61,7% Produkt: Metalle - NE

Metall\Kupfer-DE-sekundär-2010

Verhüttung und Raffination Sekundärkupfer; Als Sekundärkupfer wird das Reinmetall verstanden, das aus Sekundärrohstoffen gewonnen wird. Diese können metallischer Art sein (Kupfer, Messing-, Bronze- und Rotgußschrotte) oder aus kupferhaltigen Zwischen- und Abprodukten wie Schlämmen, Krätzen und Schlacken bestehen. Eine mittlere Zusammensetzung der Materialien kann aufgrund der enormen Heterogenität nicht angegeben werden (#1). In GEMIS wird die Sekundärkupfer-Herstellung auf pyrometallurgischem Wege bilanziert. Überwiegend wird dazu das sogenannte Schachtofen-Konverter-Verfahren angewendet (#1). Metallisches Einsatzmaterial wird dabei im Konverter oder Anodenofen eingesetzt, die sonstigen sekundären Rohstoffe werden zusammen mit den Schlacken im Schachtofen oder Elektroofen unter reduzierenden Bedingungen eingeschmolzen. Die Weiterverarbeitung läuft dann wie auch beim Primärkupfer. Die bilanzierte Prozesskette sowie die daraus generierten Daten gelten für Deutschland im Bilanzzeitraum von 1992-1994. Es werden ca. 40 % des in Deutschland verbrauchten Kupfers aus Sekundärmaterialien gewonnen (#1). Im internationalen Vergleich weisen die Daten einen sehr geringen Energiebedarf, sehr geringe Emissionswerte durch die hohen bundesdeutschen Emissionsstandards und auch geringe Reststoffmengen auf. Verglichen mit Daten anderer Konvenienz muß mit erheblichen Unterschieden gerechnet werden, die aber in der vorliegenden Studie nicht berücksichtigt werden können. Ergänzend zu der hier vorliegenden Bilanz sei auf die Arbeiten der Bundesanstalten für Geowissenschaften und Rohstoffe (BGR) verwiesen („Stoffmengenflüsse und Energiebedarf bei der Gewinnung ausgewählter mineralischer Rohstoffe, Maßnahmeempfehlungen für eine umweltschonende nachhaltige Entwicklung“) in deren Rahmen auch die weltweite Kupfererzeugung bilanziert wird. Weiterhin wird auf die Arbeiten der ETH-Zürich verwiesen, die eine Abschätzung mit geringerem lokalen Bezug vorgenommen haben (ETH 1995). Ein direkter Vergleich der Arbeit der RWTH Aachen, die dieser Bilanzierung zugrundeliegt mit anderen Arbeiten ist im Rahmen von GEMIS nicht durchführbar. Die RWTH Aachen behält sich einen Vergleich zu einem späteren Zeitpunkt vor (Bruch 1995). In Deutschland sind drei Schmelz- und Raffinierhüttenbetriebe an der Verarbeitung beteiligt (#1). Allokation: Als Kuppelprodukte dieser Prozeß-Einheit entstehen Schwefelsäure und Anodenschlämme sowie Nickelsulfat. Für die Schwefelsäure wird dem Prozeß eine massenbezogene Gutschrift über die Primärherstellung der Schwefelsäure gewährt. Für die Anodenschlämme, die andere NE-Metalle und auch Edelmetalle enthalten wird im Rahmen dieser Studie keine Gutschrift vergeben, da über die Zusammensetzung des Anodenschlamms keine Informationen vorliegen. Auch für Nickelsulfat wird weitergehender Informationen keine Allokation vorgenommen. Daher werden sowohl die Anodenschlämme als auch das Nickelsulfat als Reststoffe mitgeführt. Die Schlacke wird im Rahmen von GEMIS nicht als Kuppelprodukt sondern als Reststoff bilanziert. Eine Allokation wird daher nicht vorgenommen. Sowohl für die Schrotte, deren Herkunft und Zusammensetzung anhand der vorliegenden Daten nicht zu beurteilen ist, als auch für die weiteren Sekundärmaterialien werden zur Bereitstellung für den Prozeß die Transportaufwendungen bilanziert. Eine weitergehende Aufbereitung wird ihnen nicht angelastet. Genese der Kennziffern: Massenbilanz: Bezogen auf eine Tonne Reinmetall aus der Verarbeitung sekundärer Rohstoffe müssen nach #1 rund 1040 kg Schrotte und 580 kg sonstige Sekundärrohstoffe eingesetzt werden (Schrotte und weitere Sekundärrohstoffe werden in GEMIS summarisch betrachtet). Als Kuppelprodukte entstehen nach #1 pro Tonne Kathodenkupfer 10 kg Anodenschlamm und 20 kg Nickelsulfat. Sie werden wie oben beschrieben in GEMIS als Reststoffe mitbilanziert. Eine nachgeschaltete Schwefelsäureproduktion ist nicht notwendig. Durch diese fehlende Stufe in der Rauchgasreinigung werden aber höhere Anforderungen an den Input hinsichtlich des Quecksilber- und Schwefelgehaltes gestellt. Wie bei der Primärkupfererzeugung wird auch hier die Schlackenmenge von 530 kg/t Reinmetall als Reststoff bilanziert. Energiebedarf: Disaggregierte Daten für die einzelnen Prozeßschritte innerhalb der Prozeßeinheit liegen nicht vor. Der Energiebedarf ist über den gesamten Prozess aggregiert. Er setzt sich zusammen aus dem Brennstoffbedarf und dem elektrischen Energiebedarf. Als Brennstoff im Prozess wird Steinkohlenkoks angenommen (#1). Summarisch müssen nach #1 damit 9,2 GJ/t bereitgestellt werden. Diese werden direkt in den Prozessen und nicht in Kesseln in Prozesswärme umgesetzt. Neben dem Brennstoffbedarf besteht ein Strombedarf von 3,8 GJ/t. Der Strombedarf wird über das elektrische Netz (Grundlast) bereitgestellt. Prozessbedingte Luftemissionen: Für die Darstellung der prozessbedingten Luftemissionen ist wichtig, daß die Brennstoffe unter prozessspezifischen Bedingungen direkt in den Prozess eingesetzt werden. Daher können die Emissionen in GEMIS nicht über eine Verbrennungsrechnung bestimmt werden. Daher werden die Daten aus #1 und #2 übernommen, die über Messungen in den Betrieben ermittelt wurden . Die einzelnen Werte sind in der folgenden Tabelle dargestellt: Tab.: Emission von Luftschadstoffen bei der Verhüttung und der Raffination von Sekundärkupfer durch den Einsatz von Brennstoffen (#1). Schadstoff Menge in kg/t Reinmetall NOx 1,96 SO2 3,92 Staub 0,21 CO2 1230 CO 3,08 HC 0 Wasserinanspruchnahme: Zur Wasserinanspruchnahme dieses Prozesses liegen keine Informationen vor. Eine fehlende Angabe ist hier allerdings nicht als nicht existierende Wasserinanspruchnahme zu werten. Abwasserinhaltsstoffe: Wie zur Wasserinanspruchnahme liegen auch zur Abwasserbilanz nur unzureichende Werte vor. Es wird eine Abwassermenge von <1 m³/t Produkt bilanziert (#1). Angaben zu den Abwasserinhaltstoffen wurden wegen der als gering abgeschätzten Relevanz nicht erhoben (#2). Reststoffe: Zusätzlich zu den bereits im Rahmen der Massenbilanz erwähnten Reststoffen fallen weiterhin 120 kg/t Reinmetall Flugstäube an (#1). Damit wird insgesamt eine Reststoffmenge von 680 kg/t Reinmetall bilanziert. Auslastung: 5000h/a Brenn-/Einsatzstoff: Recyclate gesicherte Leistung: 100% Jahr: 2010 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 61,7% Produkt: Metalle - NE

1 2 3 4 528 29 30