Ziel unseres Projekts ist es zu verstehen wie sich extreme Hochwasser von kleinen Hochwassern unterscheiden und wie ausgehend von kleinen Hochwassern extrapoliert werden kann. Wir untersuchen Mechanismen und Prozessinteraktionen die 'heavy tail' Hochwasserwahrscheinlichkeitsverteilungen generieren. Außerdem untersuchen wir Schwellwertprozesse und andere Mechanismen die zu Nichtlinearitäten führen wenn sich die Größenordnung des Hochwassers ändert. Insbesondere werden auch die Vorbedingungen und Konsequenzen von Hochwasserwellenänderungen, z.B. Überlagerungen untersucht. Die Analysen beinhalten die gesamte Hochwasserprozesskaskade. Wir werden die Charakteristika der größten Hochwasser denen der restlichen, kleineren Hochwasser gegenüberstellen um zu verstehen, ob große Hochwasser durch spezifische Prozesse ausgelöst und beeinflusst werden oder durch große Varianten derselben Prozesse. Die folgenden Forschungsfragen sollen beantwortet werden: Auf welche Weise steht das 'upper tail' Verhalten von Hochwasserwahrscheinlichkeitsverteilungen in Beziehung zu Einzugsgebiets- und Ereignischarakteristika? Welche Mechanismen und Prozessinteraktionen führen zu 'heavy tails' (endlastigen Hochwasserwahrscheinlichkeitsverteilungen)? Wie führen hochwasserauslösende Bedingungen (raum-zeitliche Niederschlagsmuster, Topographie, Hochwassertypen) und Interaktionen zwischen Flusslauf und Überschwemmungsflächen (Abflussverhalten, Rückhaltung, Deichbrüche) zu unterschiedlichen Hochwasserwellencharakteristika hinsichtlich Spitzenabfluss, Volumen, Wellenablaufzeiten, und zu verschiedensten Wellenveränderungen? Wie entwickeln sich oder verflüchtigen sich solche Muster von kleinen zu großen Hochwassern? Entstehen große Hochwasser durch andere Mechanismen als kleine Hochwasser? Wie verändern sich das Ausmaß und die Ursachen von Nichtlinearitäten der Prozesse mit steigender Hochwasserstärke? Was ist die spezifische Rolle von Schwellwertprozessen für die Entwicklung von extremen Hochwassern?
Karst entsteht sich durch die Verwitterung von Karbonatgestein und erzeugt starke oberflächliche und unterirdische Heterogenität von hydrologischen Speicher und Fließprozessen. Ungefähr 7% bis 12% der Erdoberfläche besteht aus Karstgebieten und etwa ein Viertel der Weltbevölkerung ist ganz oder teilweise abhängig von Trinkwasser aus Karstgrundwasserleitern. Für die nächsten Jahrzehnte, Klimamodelle prognostizieren einen starken Temperaturanstieg und eine Abnahme von Niederschlagsmengen in vielen Karstregionen der Welt. Trotz dieser Vorhersagen gibt es nur wenige Studien, die die Auswirkungen des Klimawandels auf die Karstwasserressourcen abschätzen. Die ist hautsächlich auf das Fehlen von Messdaten und die inadäquate Abbildung von Karstprozessen in derzeit angewandten Ansätzen zur großskaligen Modellierung zurückzuführen. Das Ziel der beantragten Nachwuchsgruppe ist, die notwendigen Daten und Ansätze zur erstmaligen Abschätzung der gegenwärtigen und zukünftigem Verfügbarkeit von Wasserressourcen in Karstgebieten zur Verfügung zu stellen. Um dieser Herausforderung gerecht zu werden, sind signifikante Fortschritte (1) zum Verständnis der Heterogenität von Karstregionen und zu deren Einarbeitung in hydrologische Modelle, (2) zum Upscaling von Beobachtungen auf der Einzugsgebietsskale für Anwendungen von Simulationsmodellen im globalen Maßstab, und (3) zum Vergleich der gegenwärtigen und zukünftigen Verfügbarkeit von Wasserressourcen mit gegenwärtigen und zukünftigen Wasserbedarf von Nöten. Im vorgeschlagenen Projekt sollen neuartige Ansätze zur Messung und Analyse hydrologischer Daten an fünf experimentellen Messgebieten, die in 5 verschiedenen Klimaregionen über den Globus verteilt sind (AU, D, ES, MX, UK), eingesetzt werden, um die Einflüsse der Heterogenität von Karstgebieten auf oberflächennahe Fließprozesse zu erkunden. Mittels einer neu entwickelten Karstdatenbank, welche beobachtete Zeitreihen von Karstquellenabflüssen enthält, und Rezessionsanalyse sollen die Heterogenität von Grundwasser und Abflussprozesse in verschiedenen Regionen der Welt charakterisiert werden. Dieselbe Datenbank, erweitert durch zusätzlich Abflussdaten auf Flussgebietsskale des Global Runoff Data Center (GRDC), soll zur Entwicklung eines neuen Ansatzes zur Einbindung der neu gewonnenen Erkenntnisse in ein großskaliges Simulationsmodell speziell für Karstregionen angewandt werden. Dieses Modell soll letztendlich dazu benutzt werden, um (1) gegenwärtige und, gekoppelt mit Klimaszenarien, zukünftige Verfügbarkeit von Wasserressourcen in Karstgebieten zu erkunden, um diese (2) mit gegenwärtigen und zukünftigen Wasserbedarf zu vergleichen und von Wassermangel bedrohte Regionen zu identifizieren.
Mikroplastik (MP, Plastikteile kleiner als 5 mm) werden als neu aufkommende Schadstoffe betrachtet und neuste Studien belegen die potentielle Gefahr von MP für die menschliche Gesundheit und die Umwelt. Die Forschung hat sich bisher mehrheitlich auf die Untersuchung von MP in der marinen Umgebung konzentriert. Allerdings konnte MP auch vermehrt Süßwasser und -sedimenten weltweit nachgewiesen werden. Als Primärpartikel oder Sekundärprodukte aus dem Abbau von Makroplastik kann MP entweder direkt toxisch wirken oder als Überträger von sorbierten Schadstoffen fungieren. Neuste Studien belegen außerdem, dass MP in die menschliche Nahrungskette eindringen kann. Weiterhin können die dem MP beigefügten endokrinen Disruptoren wie Bisphenol A (BPA) and Nonylphenol (NP) während der Transportprozesse an das Süßwasser abgegeben werden. Dabei können Flussbettsedimente potentielle Hotspots für die Akkumulation von MP und deren Additive darstellen.Das Hauptziel dieses Projektes ist, die Akkumulation und den Transport von MP in Süßwasser und -sedimenten näher zu untersuchen. Dabei soll den folgenden beiden grundsätzlichen Fragen nachgegangen werden:(i) Welche Prozesse kontrollieren Transport und Akkumulation von MP verschiedener Größe, Dichte und Zusammensetzung und wie bilden sich sogenannte Mikroplastik-Hotspots in der hyporheischen Zone?(ii) Wie können Transport und Akkumulation von MP sowie die Freisetzung von Additiven wie BPA und NP unter variablen Umweltbedingungen beschrieben und vorhergesagt werden? Zwei Arbeitspakete (WP) sollen helfen, diese Fragen zu beantworten:WP1 befasst sich mit den Auswirkungen der grundlegenden Eigenschaften von MP wie Größe, Form, Zusammensetzung, Dichte, Auftrieb auf deren Transport und untersucht systematisch, wie verschiedene Arten von MP in der hyporheischen Zone (hier Flussbettsedimente) unter diversen hydrodynamischen und morphologischen Bedingungen akkumulieren. Dafür sollen Versuche in künstlichen Abflusskanälen (artificial flumes) durchgeführt werden. In diesen Versuchen werden repräsentative hydrodynamische und morphologische Bedingungen geschaffen, um eine Spannbreite an primären und sekundären MP zu testen, ihr Transportverhalten zu beschrieben und die Freisetzung von Additiven näher zu untersuchen. MP wird mit verschiedensten Methoden charakterisiert, z.B. mit single particle ICP-MS zur Bestimmung der Größe oder FT-IR zur Bestimmung des vorherrschenden Polymers. Während der Flume-Experimente werden die Eigenschaften der Sedimente, des Porenwassers und der Biofilme, sowie die Konzentration an BPA und NP gemessen und später analysiert, um die Reaktivität der Akkumulationshotspots zu bestimmen.WP2 beinhaltet die Entwicklung und Anwendung eines Models, um MP-Transport sowie die Freisetzung von Additiven in der hyporheischen Zone vorherzusagen. Da Modelle, die momentan im Bereich Stofftransport verwendet werden nicht für MP ausgelegt sind, soll die Lattice-Boltzmann Methode als neuer Modellansatz verfolgt werden.
Es gibt immer mehr Beweise für das Zusammenspiel von Ökologie und Evolution auf der gleichen Zeitskala, die die Reaktionen der Gemeinschaft prägt. Es ist jedoch noch wenig darüber bekannt, wie Stressoren (wie zum Beispiel Chemikalien) ökologisch-evolutionäre Dynamik beeinflussen und Artengemeinschaft verändert. Es ist jedoch wichtig den Einfluss von Stressoren auf ökologisch-evolutionären Dynamik zu verstehen um Vorhersagen zu können, wie sich Artengemeinschaften an Umweltveränderungen anpassen. In diesem Projekt plane ich die Rolle von chemischen Stressoren auf ökologisch-evolutionäre Dynamiken in gestörten Artengemeinschaften und die Veränderungen auf struktureller und funktionaler (Rettung, Maske, Divergenz) Ebene zu untersuchen. Dafür plane ich Chemostat-Experimente und experimentelle Assays zu kombinieren, um die chemische Belastung zu manipulieren und das Auftreten ökoevolutionärer Dynamiken in einer mikrobiellen Gemeinschaft zu untersuchen. Darüber hinaus plane ich, Veränderungen in der Gemeinschaftsstruktur und -funktion unter wiederholter chemischer Belastung zu bewerten und den zugrunde liegenden Mechanismus im Detail zu untersuchen, indem ich das Potenzial für Ökologie und Evolution manipuliere. Für die Experimente werde ich eine mikrobielle Gemeinschaft verwenden, die aus einem Protisten als Wirt, seinem Virus, einem Virophage und einem Beutebakterium für den Protist besteht. Die Beobachtung der Gemeinschaftsdynamik in gestörten und ungestörten Umgebungen und die Beobachtung ökologischer (Populationsdynamik, Gemeinschaftsstruktur und -funktion) und evolutionärer Veränderungen (Wirtsresistenz, Virusinfektion und Bakterienabwehr) im Laufe der Zeit wird es mir ermöglichen, das Zusammenspiel von Ökologie und Evolution und die Rolle des chemischen Stressors für die gesamte Gemeinschaftsdynamik, -struktur und -funktion zu bewerten. Die Ergebnisse dieses Projekts werden zum Verständnis der Fähigkeit von Gemeinschaft beitragen, Umweltveränderungen abzufedern, und die unterschiedlichen Rollen von Ökologie und Evolution in diesen Reaktionen.
Flache Süßwasser-Lebensräume bieten wichtige Ökosystem-Funktionen, sind aber von multiplen Stressoren bedroht. Während die Reaktion auf den globalen Klimawandel wahrscheinlich eher graduell ist, sind abrupte Veränderungen möglich, wenn kritische Schwellenwerte durch zusätzliche Effekte lokaler Stressoren überschritten werden. Die Analyse dieser Effekte ist komplex, da Stressoren additiv, synergistisch oder antagonistisch wirken können. CLIMSHIFT zielt auf ein mechanistisches Verständnis von Stressor-Interaktionen, die auf flache aquatische Ökosysteme wirken. Diese sind aufgrund ihrer hohen Oberfläche-zu-Volumen-Verhältnisse, der großen Ufer-Grenzfläche und der Grundwasser-Konnektivität besonders anfällig für Klimaerwärmung und Stoffeinträge aus landwirtschaftlichen Einzugsgebieten. Die komplexen Wechselwirkungen zwischen verschiedenen Primärproduzenten sowie assoziierten Konsumenten führen zum Auftreten stabiler Regime, und multiple Stressoren können nichtlineare Übergänge zwischen diesen Regimen auslösen, mit weitreichenden Folgen für entscheidende Ökosystemprozesse und -funktionen. Unsere Haupthypothese ist, dass erhöhte Temperaturen die negativen Auswirkungen der landwirtschaftlichen Stoffeinträge, die Nitrat, organische Pestizide und Kupfer enthalten, verstärken. Submerse Makrophyten, Periphyton und Phytoplankton als Primärproduzenten werden kombiniert mit Schnecken, die Periphyton und Pflanzen fressen, sowie benthischen und pelagischen Phytoplankton-Filtriern, Dreissena und Daphnien. Wir testen unterschiedliche Expositionsszenarien auf zwei räumlichen Skalen, Mikrokosmen im Labor und Mesokosmen im Freiland, um Effekte auf individueller, gemeinschaftlicher und ökosystemarer Ebene zu verstehen. Während des gesamten Projekts werden die Experimente durch Modellierungen ergänzt, um kritische Schwellwerte zu simulieren und Stress-Interaktionen vorherzusagen. Die Modellentwicklung wird in Zusammenarbeit mit allen Arbeitspaketen durchgeführt, um empirische Ergebnisse zu integrieren, unterschiedliche räumliche und zeitliche Skalen zu verknüpfen und Ergebnisse zu extrapolieren. Wir erwarten, dass kombinierte Stressoren zu plötzlichen Verschiebungen der Gemeinschaftsstruktur führen. Submerse Makrophyten werden voraussichtlich durch Phytoplankton oder benthische Algen ersetzt, mit Konsequenzen für wichtige Ökosystemfunktionen. Die Stärke unseres Antrages liegt darin, dass ökotoxikologische Stressindikatoren der Organismen wie Wachstum und Biomarker mit funktionalen Gemeinschafts-/Ökosystemansätzen kombiniert werden, die den Metabolismus und die Dynamik des Ökosystems betrachten. Das kombinierte Know-how von 5 Laboren mit komplementärem Fachwissen und allen notwendigen Einrichtungen wird die spezifische Projektfähigkeit sicherstellen. Unsere Ergebnisse sollen dazu beitragen, safe operating spaces/sichere Handlungsräume für eine nachhaltige Landwirtschaft und das Management von flachen aquatischen Ökosystemen in einer sich verändernden Welt zu definieren.
Methane emissions from inland water bodies are of growing global concern since surveys revealed high emissions from tropical reservoirs and recent studies showed the potential of temperate water bodies. First preliminary studies at the River Saar measured fluxes that exceed estimates used in global budgets by one order of magnitude. In this project we will investigate the fluxes and pathways of methane from the sediment to the surface water and atmosphere at the River Saar. In a process-based approach we will indentify and quantify the relevant environmental conditions controlling the potential accumulation of dissolved methane in the water body and its release to the atmosphere. Field measurements, complemented by laboratory experiments and numerical simulations, will be conducted on spatial scales ranging from the river-basin to individual bubbles. We will further quantify the impact of dissolved methane and bubble fluxes on water quality in terms of dissolved oxygen. Special emphasize will be put on the process of bubble-turbation, i.e. bubble-mediated sediment-water fluxes. The project aims at serving as a reference study for assessing methane emissions from anthropogenically altered river systems.
Arsen-kontaminiertes Grundwasser stellt eine große Gefahr für zig Millionen von Menschen dar, insbesondere in Süd- und Südost-Asien, durch seine Verwendung als Trinkwasser und für die Bewässerung von Reisfeldern. Das Hauptziel dieses Projekts ist es gemeinsam mit Wissenschaftlern der Stanford University die Menge an giftigem Arsen in den beiden wichtigsten Expositionsquellen, Wasser und Reis, zu reduzieren und zu bestimmen wie i) Arsen effizient mit Wasserfiltern aus dem Trinkwasser entfernt und ii) die Arsenaufnahme durch Reis während der Nasskultivierung reduziert werden kann. Im ersten Teilprojekt planen wir in Vietnam zu untersuchen, unter welchen Bedingungen Wasserfilter Arsen effizient entfernen, wie lange die Filter verwendet werden können und ob gesundheits-schädigende Konzentrationen von Nitrate in den Filtern gebildet werden. Wir werden einen visuell sichtbaren Indikator in den Filtern entwickeln, der es der breiten Bevölkerung erlaubt, ohne analytische Verfahren oder besonderen Bildungsstand zu bestimmen, wann die Effizienz des Filters aufgrund der Sättigung mit Arsen verschwindet und das Filtermaterial ersetzt werden muss. Darüber hinaus werden wir untersuchen, wie das Arsen-verschmutzte Filtermaterial ohne weitere Risiken entsorgt werden kann. Im zweiten Teilprojekt werden wir untersuchen, ob die Stimulation von nitrat-reduzierenden, eisenoxidierenden Bakterien in Reisfeldböden die Arsenaufnahme in Reis reduziert durch die Bindung von Arsen an die gebildeten Minerale. Wir werden bestimmen, wie die Zugabe definierter Mengen an Nitrat helfen kann, gleichzeitig die Arsenaufnahme in den Reis und die Emission des Treibhausgases N2O zu minimieren. Dieses Projekt wird für die Bevölkerung in Arsen-betroffenen Ländern praktische Lösungen bieten, um mögliche Schädigungen durch Arsen und Nitrat zu reduzieren und ihre Gesundheit und Lebenssituation zu verbessern.
Städte haben ihre Wurzeln im Untergrund. Hier befinden sich die Fundamente von Gebäuden und ein wesentlicher Anteil der urbanen Infrastruktur. Zugleich dient der Untergrund als Wasserreservoir und als Quelle für erneuerbare Energie. Ein bisher wenig beachtetes Phänomen sind die sogenannten Urbanen Wärmeinseln im Untergrund (UWIU), die sich oft unbemerkt über Jahrzehnte ausbreiten. Sie reichen häufig über das gesamte Stadtgebiet, in dem erheblich höhere Boden- und Grundwassertemperaturen zu finden sind als in der ungestörten, ländlichen Umgebung. Die Ursachen hierfür sind vielfältig und gerade die langfristige Entwicklung von UWIUs ist noch heute ungeklärt. Um Empfehlungen für eine möglichst proaktive Nutzung des städtischen Untergrunds in der Zukunft zu erstellen, gilt es, die treibenden Prozesse und Faktoren zu ergründen, die UWIUs in verschiedenen Städten verursachen. Das Kernthema dieses Projekts ist, erstmalig die thermischen Bedingungen unter zwei chinesischen und deutschen Städten, Nanjing und Köln, zu vergleichen. Die teilnehmenden Wissenschaftler haben weitreichende Erfahrung in der Erforschung von UWIUs in ihren Ländern und in Vorarbeiten bereits eine umfassende Datenbasis von Boden- und Grundwassertemperaturen gesammelt. Kernziel ist es, diese mit einem neuen gemeinsamen Messprogramm zu aktualisieren und aus der vergangenen und aktuellen Entwicklung der beobachteten UWIUs auf die zukünftige Temperaturentwicklung im Untergrund zu schließen. Dies wird erreicht durch ergänzende Laborversuche und umfassende numerische Simulationen, die insbesondere die zeitliche Entwicklung der Landnutzung berücksichtigen. Die Ergebnisse für die Städte in Deutschland und China werden verglichen und so individuell von gemeinsamen Charakteristiken unterschieden. Auf diese Weise werden allgemeingültige Zusammenhänge erschlossen, die sich auch auf weitere weniger erforschte Städte übertragen lassen und dort Prognosen zur zukünftigen UWIU-Entwicklung ermöglichen.
Die Verunreinigung unserer Wasserressourcen mit organischen Schadstoffen, wie etwa Öl-bürtigen Kohlenwasserstoffen, ist ein ernstzunehmendes Problem und hat vielerorts bereits zu einer chronischen Belastung des Grundwassers geführt. Der biologische Abbau ist der einzige natürliche Prozess, der im Untergrund zu einer Schadstoffreduktion führt. Als Steuergrößen gelten hier die Anwesenheit von Abbauern (Mikroorganismen) und die Verfügbarkeit von Elektronenakzeptoren und Nährstoffen. In den letzten Jahren wurde zudem die Bedeutung dynamischer Umweltbedingungen (z.B. Hydrologie) als wichtige Einflussgröße erkannt. Ein wichtiger Aspekt wurde jedoch bisher nicht in Betracht gezogen, nämlich die Rolle der Viren bzw. Phagen. Viren sind zahlenmäßig häufiger als Mikroorganismen und ebenso ubiquitär vorhanden. Mittels verschiedener Mechanismen können sie einen enormen Einfluss auf die mikrobiellen Gemeinschaften ausüben. Einerseits verursachen sie Mortalität bei ihren Wirten. Andererseits können sie über horizontalen Gentransfer den Wirtsstoffwechsel sowohl zu dessen Vorteil als auch Nachteil modifizieren. In den vergangenen Jahren konnten verschiedene mikrobielle Phänomene der Aktivität von Viren zugeschrieben werden. Die klassische Ansicht, dass Viren ausschließlich Parasiten sind, ist nicht mehr zutreffend. Als Speicher und Überträger von genetischer Information ihrer Wirte nehmen sie direkten Einfluss auf biogeochemische Stoffkreisläufe sowie auf die Entstehung neuer Schadstoffabbauwege. Biogeochemische Prozesse in mikrobiell gesteuerten Ökosystemen wie dem Grundwasser und die dynamische Entstehung und Anpassung an neue Nischen als Folge von Veränderungen der Umweltbedingungen kann nur verstanden werden, wenn der Genpool in lytischen und lysogenen Viren entsprechend mit berücksichtigt wird. Das Projekt ViralDegrade stellt Paradigmen in Frage und möchte eine völlig neue Perspektive hinsichtlich der Rolle der Viren beim mikrobiellen Schadstoffabbau eröffnen, welche zur Zeit noch als Black Box behandelt werden. ViralDegrade postuliert, dass Viren (i) durch horizontalen Gentransfer und den Einsatz von metabolischen Genen den Wirtsstoffwechsel modulieren (Arbeitshypothese 1) und (ii) für den temporären Zusammenbruch von dominanten Abbauerpopulationen und, damit verbunden, für den Wechsel zwischen funktionell redundanten Schlüsselorganismen verantwortlich sind (Arbeitshypothese 2). Sorgfältig geplante Labor- und Felduntersuchungen und vor allem der kombinierte Einsatz von (i) neu entwickelten kultivierungsunabhängigen Methoden, wie etwa dem Viral-Tagging, und (ii) ausgewählten schadstoffabbauenden aeroben und anaeroben Bakterienstämmen, garantieren neue Erkenntnisse zur Rolle der Viren beim mikrobiellen Schadstoffabbau sowie ähnlichen mikrobiell gesteuerten Prozessen. Ein generisches Verständnis der Vireneinflüsse wird zudem zukünftig neue Optionen für die biologische Sanierung eröffnen.
Zwischenabfluss (ZA) ist ein bedeutender Abflussbildungsprozess in gebirgigen Einzugsgebieten der feucht-gemäßigten Klimazonen. Obwohl ZA bereits seit den 1970er Jahren intensiv untersucht wird, ist es ein noch immer schwer zu erfassender Prozess in der Einzugsgebietshydrologie. Es ist unklar, welche wesentlichen Faktoren dessen räumliche und zeitliche Verteilung steuern und wie dieser Prozess in Niederschlag-Abfluss-Modellen parametrisiert werden kann. Um diese Forschungslücke zu schließen, wird das wissenschaftliche Netzwerk, Zwischenabfluss: Ein anerkannter, aber immer noch schwer zu erfassender Prozess in der Einzugsgebietshydrologie, gegründet, in dem aktuelle Probleme zur1) Identifizierung maßgeblicher Einflussfaktoren des ZA,2) Parametrisierung des ZA in N-A-Modellen sowie3) zu bestehenden Ansätze der Kalibrierung und Validierung des ZA diskutiert werden. Das Netzwerk setzt sich aus den Nachwuchswissenschaftler/innen Sophie Bachmair, Theresa Blume, Katja Heller, Luisa Hopp, Ute Wollschläger, Thomas Graeff, Oliver Gronz, Andreas Hartmann, Bernhard Kohl, Christian Reinhardt-Imjela, Martin Reiss, Michael Rinderer und Peter Chifflard (PI) zusammen. Sie werden die genannten Probleme kritisch reflektieren und Forschungsdefizite als Basis für ein gemeinsames Forschungsprojekt erarbeiten, das als Forschergruppe realisiert und bei der Deutschen Forschungsgemeinschaft eingereicht wird. Das Arbeitsprogramm des Netzwerkes wird in insgesamt 6 Workshops umgesetzt, die jeweils etwa 3 Tage dauern und als moderierte, problemlösungsorientierte Workshops organisiert sind. Spezifische Fragestellungen werden zuerst in Kleingruppen erörtert und anschließend in der gesamten Gruppe diskutiert und dokumentiert. Das Ziel eines jeden Workshops ist die Erarbeitung von Hypothesen, die die Grundlage des Forschungsantrages darstellen. In den ersten vier Workshops werden die Themen 1) Zwischenabfluss: Warum? Wann? Wo? 2)Identifizierung maßgeblicher Einflussfaktoren, 3) (Boden-) hydrologische Modellkonzepte und 4) Kalibrierungs- und Validierungsansätze bearbeitet. Die international ausgezeichneten Wissenschaftler/innen Nicola Fohrer, Ilja van Meerveld, Doerthe Tetzlaff, Axel Bronstert, Olaf Kolditz, Gunnar Lischeid, Brian McGlynn und Markus Weiler nehmen an den ersten vier Workshops als Gäste teil und tragen zu den Diskussionen und der Hypothesenbildung bei. Im fünften und sechsten Workshop wird eine Projektskizze, die zur Beantragung einer Forschergruppe bei der DFG notwendig ist, verfasst und fertiggestellt. Die insgesamt sechs Workshops werden durch wissenschaftliche Exkursionen in experimentelle Untersuchungsgebiete, in denen der ZA ein maßgebende Prozess ist, ergänzt und an den Instituten der Mitglieder des Netzwerkes durchgeführt: Universitäten Marburg, Trier, Dresden, Durham (USA), UFZ Leipzig und BfW Innsbruck. Dadurch bestehen zusätzliche Kooperationen mit M. Casper, J. Fleckenstein, A. Kleber, G. Markart,F. Reinstorf, H.-J. Vogel, H. Zepp, und E. Zehe.
Origin | Count |
---|---|
Bund | 649 |
Type | Count |
---|---|
Förderprogramm | 649 |
License | Count |
---|---|
offen | 649 |
Language | Count |
---|---|
Deutsch | 448 |
Englisch | 429 |
Resource type | Count |
---|---|
Keine | 19 |
Webseite | 630 |
Topic | Count |
---|---|
Boden | 634 |
Lebewesen und Lebensräume | 553 |
Luft | 403 |
Mensch und Umwelt | 649 |
Wasser | 636 |
Weitere | 649 |