API src

Found 159 results.

Abschätzung der Vegetationsgefährdung durch Ozon in Hessen

Das Projekt "Abschätzung der Vegetationsgefährdung durch Ozon in Hessen" wird vom Umweltbundesamt gefördert und von Universität Gießen, Fachbereich 08 Biologie, Chemie und Geowissenschaften, Institut für Pflanzenökologie (Botanik II) durchgeführt. Die Konzentrationen vieler Luftinhaltsstoffe sind aufgrund vielfältiger menschlicher Aktivitäten in den letzten Jahren beträchtlich angestiegen. Als vegetationsgefährdende Komponente gewinnt dabei Ozon in der Bundesrepublik Deutschland zunehmend an Bedeutung, während z.B. Schwefeldioxid aufgrund der erfolgreichen Emissionsminderungsmaßnahmen in den Hintergrund tritt. Bei der Erstellung von Luftreinhalteplänen/Wirkungskatastern geht es darum, die räumliche und zeitliche Variabilität der Schadgaskonzentrationen im Hinblick auf eine mögliche Beeinträchtigung der Vegetation zu bewerten. Darüber hinaus gilt es, mögliche Entwicklungen der Immissionsbelastung prospektiv zu beurteilen, um frühzeitig evtl. notwendige Gegenmaßnahmen einleiten zu können. Dies bedarf integrierender Konzepte, in denen physikalisch/chemische Messprogramme und Verfahren der Bioindikation miteinander verknüpft werden. Das gemeinsam mit dem Hessischen Landesamt für Umwelt und Geologie durchgeführte Untersuchungsprogramm gliedert sich in fünf Schritte: - In einem ersten Schritt wurden potentielle Ertragsverluste durch Ozon anhand von Dosis-Wirkung-Funktionen aus der Literatur unter Verwendung hessischer Ozon-Messdaten für verschiedene Kulturpflanzen abgeschätzt. - In einem zweiten Schritt wurde eine flussorientierte Kenngröße für die Ozon-Belastung der Vegetation unter Verwendung von Messgrößen abgeleitet, die in den Ländermessnetzen erhoben werden. - In einem dritten Schritt wurde ein Modell für die Bestimmung des Gasaustausches zwischen Vegetation und bodennaher Atmosphäre entwickelt. - In einem vierten Schritt wurden sog. kritische absorbierte Ozon-Dosen (critical loads) für standardisiert exponierte Rezeptoren abgeleitet. - In einem fünften Schritt werden die aktuell in Europa diskutierten Grenzwerte zum Schutz der Vegetation vor Ozon und die ihnen zu Grunde liegenden Dosis-Wirkung-Funktionen auf ihre Übertragbarkeit auf bzw. Relevanz für die deutschen Verhältnisse untersucht. Die Methodik zur Ableitung kritischer absorbierter Ozon-Dosen (critical loads) wird weiterentwickelt sowie die Gefährdung der Vegetation durch Ozon auf regionaler Ebene realistisch abgeschätzt.

Darstellung und Optimierung von molekularen Wirten für Phosphat und ähnliche Oxoanionen

Das Projekt "Darstellung und Optimierung von molekularen Wirten für Phosphat und ähnliche Oxoanionen" wird vom Umweltbundesamt gefördert und von Technische Universität München, Institut für Organische Chemie und Biochemie, Lehrstuhl I für Organische Chemie durchgeführt. Die molekulare Erkennung von Phosphat und seinen Estern durch künstliche Wirtstrukturen (sog. abiotische Rezeptoren) ist nicht befriedigend gelöst. Dabei fänden erfolgreiche Phosphatrezeptoren unmittelbar Anwendung in ionenselektiven Elektroden z.B. für die Umweltanalytik bei der Überwachung von Gewässern. Im Zuge von Vorprojekten haben wir die Grundlagen der Phosphatbindung in wasserähnlichen Lösungsmitteln erkundet und konnten Wirte mit sehr aussichtsreichen Eigenschaften darstellen. Das vorliegende Projekt soll diese Wirte fortentwickeln und das zugrundeliegende Konzept überprüfen. In Ergänzung des bisherigen Ansatzes soll ein neuer Rezeptorbautyp hergestellt und erprobt werden, der die bekannten Prinzipien der Phosphatbindung berücksichtigt, aber vermutlich wesentlich einfacher zugänglich ist. Die kalorimetrische Vermessung der thermodynamischen Bindungsparameter liefert die Leitlinie für die Auswahl geeigneter Rezeptoren für die geplanten ionenselektiven Anwendungen.

Sequenzselektive molekulare Erkennung als Wirkprinzip am Beispiel der kleinen GTPasen Rheb und K-Ras

Das Projekt "Sequenzselektive molekulare Erkennung als Wirkprinzip am Beispiel der kleinen GTPasen Rheb und K-Ras" wird vom Umweltbundesamt gefördert und von Universität Wuppertal, Fachgruppe Chemie und Biologie, Arbeitsgruppe Organische Chemie durchgeführt. Mutationen in den Ras-GTPasen treten in bis zu 30% aller Krebserkrankungen und bei 90% der bösartigen Magen- und Darmtumore auf. Ras-Proteine werden erst nach posttranslationaler Farnesylierung und Membraneinbettung funktional. Am Beispiel der GTPasen Rheb und K-Ras sollen im geplanten Vorhaben sequenzselektive Liganden für die CaaX-Box - die Erkennungseinheit der Farnesyltransferase -, für die hypervariable C-terminale Region sowie für die Bindungsstellen des Downstream-Effektors Raf-Kinase gefunden werden. Im Falle der C-terminalen CaaX-Box werden Carboxylat-erkennende Kopfgruppen synthetisiert, die dann mittels kombinatorisch-chemischer Methoden in sequenzselektive Rezeptoren für die CaaX-Box umgewandelt werden. Diese bilden mit der CaaX-Box einen supramolekularen Komplex und verhindern dadurch die molekulare Erkennung durch die Farnesyltransferase. Im Falle der weiteren Bindungsstellen soll ein NMR-Fragment-Screening (Kooperation mit der Bio-NMR Gruppe von Raphael Stoll an der Ruhr-Universität Bochum) einen ersten Liganden für die weitere chemische Modifikation liefern. Mittels NMR-spektroskopischer Untersuchungen sollen die Bindungseigenschaften ausgewählter Liganden sowie die Strukturen von Ligand-Protein Komplexen ermittelt werden. Im Erfolgsfall liefert das vorgeschlagene Vorhaben Ras-Subtyp-spezifische und damit toxikologisch unbedenklichere Antitumor-Leitstrukturen.

Metabolit-Regulation von Cryptochrom 2 Aktivität und Blühzeitpunkt

Das Projekt "Metabolit-Regulation von Cryptochrom 2 Aktivität und Blühzeitpunkt" wird vom Umweltbundesamt gefördert und von Universität Marburg, Fachgebiet Pflanzenphysiologie und Photobiologie, Arbeitsgruppe Molekulare Pflanzenphysiologie und Photobiologie durchgeführt. Der UV-A/Blaulichtrezeptor Cryptochrom 2 (cry2) spielt eine zentrale Rolle bei der photoperiodischen Blühinduktion. Wichtige Komponenten der Signalleitung von cry2 sind mehrere nah verwandte bHLH Transkriptionsfaktoren (CIB1, CIB2, CIB4, CIB5), die Blaulicht-abhängig an cry2 binden, als Heterodimere an nicht-kanonische E-Box Motive in der Promotorregion des FLOWERING LOCUS T (FT) Gens binden und hierdurch die Expression dieses zentralen Blühgens induzieren. Weiterhin interagiert cry2 im Blaulicht mit SPA-Proteinen und inhibiert damit die Aktivität der E3 Ubiquitin Ligase CONSTITUTIVE PHOTOMORPHOGENESIS 1 (COP1), die maßgeblich am Abbau des FT-Transkriptionsaktivators CONSTANS (CO) beteiligt ist. Wir haben gezeigt, dass der FAD-Chromophor im signalaktiven Zustand von cry2 in der neutralen Semichinonform vorliegt und die Bildung dieser Form durch Metabolite wie ATP und NADPH verstärkt wird. Gerichte und strukturbasierte Mutagenese von CRY2 lieferte Hinweise darauf, welche Aminosäuren für die Metabolit-Kontrolle erforderlich sind. Diese Information soll genutzt werden, um die Rolle dieser Metabolite bei der photoperiodischen Blühinduktion aufzuklären. Geplant ist hierfür die Expression entsprechender cry2 Allele in planta und die Analyse der generierten Pflanzenlinien hinsichtlich Blühverhalten, FT-Expression und Interaktion mit down-stream Komponenten. Diese Untersuchungen sollen durch in vitro Studien mit rekombinanten Proteinen komplettiert werden. Im Gegensatz zum Wildtyp Allel von cry1 induziert die cry1L407F Mutante gesteigerte Expression von CO und FT sowie frühes Blühen im Kurztag. In vitro Analysen zeigten ein tryptisches Spaltmuster von cry1L407F im Dunkeln, welches dem von Wildtyp cry1 im Blaulicht entspricht. Das geplante Vorhaben soll klären, ob cry1L407F die gleichen Komponenten wie cry2 für die Induktion von FT nutzt. Hierfür sind Analysen der cry1L407F Mutante im cib1/cib2/cib5 Hintergrund sowie Interaktionsstudien mit cry2 Partnern geplant. Direkte Zusammenarbeiten ergeben sich mit den Vorhaben von Christian Jung (Blühkontrolle bei Beta vulgaris) und Markus Schmid (Regulation des Blühzeitpunkts durch Trehalose-6-P).

Assayentwicklung und Elektrophysiologie

Das Projekt "Assayentwicklung und Elektrophysiologie" wird vom Umweltbundesamt gefördert und von Universität Tübingen, Naturwissenschaftliches und Medizinisches Institut durchgeführt. Medikamente, Umweltgifte oder pathophysiologische Vorgänge können zu einem weiten Spektrum funktioneller Störungen des Nervensystems führen. Der größte Teil der Forschung daran findet im Tier statt. Aktuelle in vitro Systeme nutzen z.B. menschliche Neuronen, die aus Stammzellen (iPSC) differenziert werden. Diese Systeme sind bisher sehr teuer und in ihren Endpunkten wenig standardisiert. Das von der Pharmaindustrie und EU gestartete IMI2-Projekt NeuroDeRisk zeigt den enormen Bedarf an Innovation und praktischer Umsetzbarkeit in der Toxikologie. Noch höher ist der Bedarf in anderen biomedizinischen Forschungsfeldern. Basierend auf unseren bereits publizierten soliden Vorarbeiten wird hier ein robustes, hochdurchsatzfähiges und umfassendes Testsystem für Neuronenfunktionen zur Anwendungsreife gebracht. Es basiert auf einer humanen Zelllinie von Neuronenvorläufern, aus der hochreproduzierbar homogene, ausgereifte und funktionell-gekoppelte Nervenzellkulturen im 384-Well Format hergestellt werden können. Wir gehen davon aus, dass durch das Projekt eine robuste Testmethode mit bekannten Akzeptanzkriterien und Leistungsparametern (auf Basis gut charakterisierter Modellsubstanzen) möglichen Interessenten zur Verfügung gestellt werden kann. Im Projekt werden alle relevanten Neurotransmitterrezeptoren funktionell charakterisiert, um die Anwendungsdomäne genau zu definieren. Sowohl die Signale einzelner Rezeptoren, als auch koordinierte Netzwerkaktivität werden mithilfe industrierelevanter Techniken wie Ca2+ Fluoreszenzmessungen extrem reproduzierbar und parallelisierbar erfasst. Neben diesem standardisierten Basistest sollen modulare Erweiterungen angeboten werden. Z.B. erlaubt die Kultivierung als 3D Organoide eine Erfassung chronischer Substanzwirkung oder pathologischer Vorgänge. Für letzteres (z.B. Neuroinflammation oder metabolische Störungen) ist auch der Einbau von Gliazellen und genetisch modifizierten Neuronen als Option vorgesehen.

Schwerpunktprogramm SFB 924: Molekulare Mechanismen der Ertragsbildung und Ertragssicherung bei Pflanzen - Teilprojekt A03: Zur Rolle der CRPs während des Pollenschlauchwachstums und der pilzlichen Invasion in die Reproduktionsgewebe von Mais

Das Projekt "Schwerpunktprogramm SFB 924: Molekulare Mechanismen der Ertragsbildung und Ertragssicherung bei Pflanzen - Teilprojekt A03: Zur Rolle der CRPs während des Pollenschlauchwachstums und der pilzlichen Invasion in die Reproduktionsgewebe von Mais" wird vom Umweltbundesamt gefördert und von Universität Regensburg, Lehrstuhl für Zellbiologie und Pflanzenbiochemie durchgeführt. Wir wollen die Doppelrolle polymorpher Defensine und Defensin-ähnlicher Proteine (DEFLs) für den Fortpflanzungserfolg und die Pathogenabwehr untersuchen. In der Nutzpflanze Mais werden Narbenfäden und Samenanlagen gleichermaßen von Pollenschläuchen und pathogenen Pilzfäden penetriert. In einem vergleichenden Ansatz sollen daher DEFL-regulierte Signalmechanismen in beiden Geweben identifiziert, und die molekulare Interaktion ausgewählter DEFL-Subklassen mit ihren Zielproteinen analysiert werden. Langfristig sollen hierdurch inner- und zwischenartliche präzygotische Kreuzungsbarrieren überwunden und Pilzresistenz bei Kulturpflanzen erzeugt werden.

Schwerpunktprogramm SFB 924: Molekulare Mechanismen der Ertragsbildung und Ertragssicherung bei Pflanzen - Teilprojekt A02: Analyse der Architektur reproduktiven Gewebes durch den Crosstalk zwischen Plasmodesmata und Rezeptorkinase-vermittelter Signaltransduktion

Das Projekt "Schwerpunktprogramm SFB 924: Molekulare Mechanismen der Ertragsbildung und Ertragssicherung bei Pflanzen - Teilprojekt A02: Analyse der Architektur reproduktiven Gewebes durch den Crosstalk zwischen Plasmodesmata und Rezeptorkinase-vermittelter Signaltransduktion" wird vom Umweltbundesamt gefördert und von Technische Universität München, Wissenschaftszentrum Weihenstephan,Fachgebiet Entwicklungsbiologie der Pflanzen durchgeführt. Ovulen sind von agronomischem Interesse, da sie die Vorläufer der Samen, der hauptsächlichen menschlichen Nahrungsquelle, darstellen. Ihre Gewebemorphogenese ist nicht verstanden, hängt in Arabidopsis aber von der interzellulären Signalübermittlung durch die Rezeptorkinase STRUBBELIG ab. Zwei weitere membrangebundene Komponenten dieser Signalkette wurden genetisch identifiziert. ZERZAUST ist eine vorhergesagte beta-1,3 Glukanase, während QUIRKY mehrere C2-Domänen besitzt. Die molekularen Funktionen von ZERZAUST und QUIRKY sollen analysiert, und die Interaktionen zwischen den drei Zelloberflächenproteinen untersucht werden.

Untersuchung neuer, polarer Lipidsingale in Plankton Interaktionen

Das Projekt "Untersuchung neuer, polarer Lipidsingale in Plankton Interaktionen" wird vom Umweltbundesamt gefördert und von Deutsche Forschungsgemeinschaft durchgeführt. Etwa die Hälfte der weltweiten Primärproduktion erfolgt durch Phytoplankton und dessen Jäger-Beute-Interaktionen mit Zooplankton bilden die Grundlage der gesamten ozeanischen Nahrungskette. Die chemischen Signale, die diese Interaktionen vermitteln, sind bisher größtenteils unbekannt. Vor kurzem konnte die Arbeitsgruppe von Erik Selander erstmals eine Gruppe solcher chemischer Signale identifizieren, die Copepodamide. Copepodamide spielen eine entscheidende Rolle in der Interaktion von Ruderfußkebsen (Copepoda) als marine, zooplanktonische Räuber mit verschiedenen Phytoplanktonspezies, wie der Gattung Alexandrium, welche an der Entstehung der schädlichen Algenblüte beteiligt ist. Die vollständige Funktion von Copepodamiden und deren Wahrnehmung durch Phytoplankton ist jedoch noch weitestgehend unbekannt. Das geplante Forschungsprojekt konzentriert sich auf zwei Hauptziele. Das erste Ziel ist die Identifizierung weiterer, neuer Copepodamide und die Untersuchung spezifischer Copepodamidmuster in verschieden Copepodspezies. Für diesen Zweck ist die Anwendung eines breiten Spektrums chemischer Separations- und Detektionstechniken geplant. Das gastgebende Institut besitzt dazu eine einmalige Kombination aus Ausrüstung, Ausstattung und Wissen um dieses Projekt zu unterstützen und ermöglicht ein tiefgreifendes Training in chemischer Ökologie und NMR-Techniken. Das zweite Ziel ist die Identifikation von Copepodamid-Rezeptorproteinen in den Phytoplanktonspezies Alexandrium tamarense und Skeletonema marioni. Dazu soll zum einen in Kooperation mit der Arbeitsgruppe von Julia Kubanek (Georgia Tech, Atlanta, USA) eine Kombination aus zell-basierten Assays und Elektrophysiologie angewendet werden. Um diese Methoden zu erlernen, ist ein Besuch der Arbeitsgruppe von Julia Kubanek vorgesehen. Des Weiteren sollen Phagen-Display und Protein-Affinitäts-Chromatografie angewendet werden, um die Copepodamid-Rezeptorproteine sowie deren genomische Sequenz zu identifizieren.Die Jäger-Beute-Interaktionen zwischen Zooplankton und Phytoplankton sind von entscheidender Bedeutung für das ökologische Gleichgewicht der Ozeane. Vornehmlich werden diese Interaktionen durch chemische Signale reguliert. Die Identifizierung dieser Signale sowie der entsprechenden Rezeptoren liefert einen entscheidenden Beitrag zum Verständnis planktonischer Interaktionen. Zudem hat das geplante Forschungsprojekt das Potential als ein Meilenstein bei der Entschlüsselung der einflussreichen, bisher jedoch unbekannter, chemischer Sprache der Ozeane zu dienen.

Schwerpunktprogramm SFB 924: Molekulare Mechanismen der Ertragsbildung und Ertragssicherung bei Pflanzen - Teilprojekt B10: Lipopolysaccharid Erkennung und Signaliwirkung bei der angeborenen Immunität der Pflanzen

Das Projekt "Schwerpunktprogramm SFB 924: Molekulare Mechanismen der Ertragsbildung und Ertragssicherung bei Pflanzen - Teilprojekt B10: Lipopolysaccharid Erkennung und Signaliwirkung bei der angeborenen Immunität der Pflanzen" wird vom Umweltbundesamt gefördert und von Technische Universität München, Wissenschaftszentrum Weihenstephan, Lehrstuhl für Phytopathologie durchgeführt. Der Nachweis konservierter Microbe-Associated Molecular Patterns (MAMPs) durch spezifische Pattern-Recognition Receptors (PRRs) der Wirtspflanze vermittelt dauerhafte Resistenz gegenüber einer Vielzahl an Pathogenen. Daher ist der Transfer von PRPs zwischen Pflanzenspezies von zentralem Interesse für die Nutzpflanzenzüchtung. Wir haben gezeigt, dass bakterielle Lipopolysaccharide (LPS) in der Modellpflanze Arabidopsis thaliana über die S-Domänen-Rezeptorkinase LORE (LIPOOLIGOSACCHARIDE-SPECIFIC REDUCED ELICITATION) detektiert werden. Wir möchten nun die Funktionsweise von LORE und die frühen Signaltransduktionsereignisse nach LPS Behandlung auf molekularer Ebene untersuchen.

Insekten-Neuropeptide - Konformation und Design von Peptidomimetika

Das Projekt "Insekten-Neuropeptide - Konformation und Design von Peptidomimetika" wird vom Umweltbundesamt gefördert und von Universität Wuppertal, Fachgruppe Chemie und Biologie, Arbeitsgruppe Organische Chemie durchgeführt. In Insekten werden zahlreiche physiologische Prozesse durch Neuropeptide gesteuert. Diese Insekten-Neuropeptide bzw. ihre Rezeptoren wurden bisher als insektizide Targets nur wenig beachtet. Die Gründe hierfür liegen hauptsächlich in der Problematik peptidischer Wirkstoffe, wie geringe metabolische Stabilität und problematische physikochemische Eigenschaften. Das Ziel der Arbeiten ist die Entwicklung eines nicht-peptischen, toxikologisch unbedenklichen, und artselektiven Wirkstoffs zur Bekämpfung des Baumwollschädling Heliothis virescens. Für das diuretische Neuropeptid Helicokinin I wurden mittels diverser Aminosäure-Scans dezidierte Struktur-Aktivitätsbeziehungen erarbeitet. Mittels aufwändiger NMR-Untersuchungen (Kooperation Prof. Zerbe Uni Zürich) wurden die Vorzugskonformationen der Neuropeptide Myosuppressin, Tachykinin und Helicokinin in künstlichen Membranen als Modelle für die rezeptorgebundene Konformation ermittelt. Die aufgeführten Arbeiten erlauben erstmalig die Aufstellung einer Hypothese bzgl. der 'biologisch aktiven' Konformation eines Insekten-Neuropeptids und das gezielte Design von Neuropeptid-Mimetika. Von diesem Modell abgeleitete Turnmimetika befinden sich derzeit in Bearbeitung.

1 2 3 4 514 15 16