API src

Found 120 results.

Lichtsignalanlagen Hamburg

Der Datensatz enthält Lage, Namen und Knotennummer aller Lichtsignalanlagen im Hamburger Stadtgebiet (ohne Hamburg Port Authority [HPA]). Signalisierte Übergänge/Einmündung etc., die als Teilknoten der LSA festgelegt sind, werden nicht als gesonderter Punkt dargestellt.

WMS Lichtsignalanlagen Hamburg

Dieser WMS (WebMapService) stellt alle Lichtsignalanlagen im Hamburger Stadtgebiet in Lage, mit Namen und Knotennummer dar. Zur genaueren Beschreibung der Daten und Datenverantwortung nutzen Sie bitte den Verweis zur Datensatzbeschreibung.

WFS Lichtsignalanlagen Hamburg

Dieser WFS (WebFeatureService) stellt alle Lichtsignalanlagen im Hamburger Stadtgebiet in Lage, mit Namen und Knotennummer zum Download bereit. Zur genaueren Beschreibung der Daten und Datenverantwortung nutzen Sie bitte den Verweis zur Datensatzbeschreibung.

PV-H2-Boot Solgenia

Das Projekt "PV-H2-Boot Solgenia" wird vom Umweltbundesamt gefördert und von Hochschule Konstanz Technik, Wirtschaft und Gestaltung, HTGW, Institut für Angewandte Forschung , Energiewandlung in Solarsystemen (IAF,EWIS) durchgeführt. 1. Introduction: In view of the increasing problem of energy supply, the University of Applied Sciences Konstanz developed a research boat powered by photovoltaic and fuel cells. The core question of the research project is, if such a combination represents a viable option for recreational and commercial boating. To answer this question, long-time performance-studies of each component by itself and in combination with others in marine environment are necessary. An Information-Management-System (IMS) interfacing to about ninety parameters was developed, providing the basis for analysis. 2. Energy Supply System: The energy supply system consists of two energy conversion units (PV-generator and fuel cell) and two energy storage units (battery and hydrogen tank). A DC/AC-inverter together with an asynchronous motor converts the electrical energy into mechanical energy for the propeller. The voltages between the three fuel cell modules as well as the PV-generator and the battery are adjusted by DC/DC-converters (see figure 1). The hydrogen will be provided by an electrolysis unit within the laboratory driven by a PV-generator and stored on land. One of the research aims is to adapt the hydrogen production depending on solar radiation to the hydrogen demand by the stationary fuel cells (in the laboratory) and the mobile fuel cells (in the boat). 3. Information management system (IMS): The requirements which the IMS has to fulfil are quite complex: 1. a real-time control-system has to operate the boat and process the parameters, 2. a graphical user interface has to provide meaningful and clear information for skipper as well as service and scientist, 3.measured data has to be periodically transmitted to a data bank at the institute for further processing. Use of the Internet gives independence of location. 4. Energy management: Energy management is one of the main tasks of the IMS. One of the research aims is to develop and optimize the management rules. The energy system itself consists of one controllable (fuel cell) and one not controllable energy converter (PV-generator) as well as of two energy storage devices (battery and H2-tank). Parameters affecting the energy management are among others: speed of boat, distance to travel, battery capacity and solar radiation. These parameters are either measured directly or calculated by the IMS. The Solgenia additionally will be used as laboratory unit in teaching: The students shall become familiar with the fundamental problems of managing renewable energies. 5. Graphical user interface: An industrial touch panel PC serves as man-machine-interface. The graphical user interface was divided into two basic groups: skipper and service/scientist. The menu for the latter group was protected by password to prevent an inexperienced skipper from creating any mischief. etc.

Effect of weed management strategies on the risk of enteric pathogen transfer into the food chain and lettuce yield and quality

Das Projekt "Effect of weed management strategies on the risk of enteric pathogen transfer into the food chain and lettuce yield and quality" wird vom Umweltbundesamt gefördert und von Universität Bonn, Institut für Organischen Landbau durchgeführt. The risk of pathogen transfer from soil to plant, here: lactuca sativa var. capitata, under organic farming conditions is to be investigated within the scope of the QLIF project. When brute fertilisers are applied during production, a health risk by consuming raw eadibles, as e.g. lettuce, is often discussed because of the demanding high standard of sanitation. The type of fertiliser might promote transfer of Enterobacteriaceae, and among these possibly human pathogens. Splash-effects during rainfall and irrigation as well as transfer of soil particles during mechanical weed control. Risks of the pathogen transfer into lettuce will be examined by use of different fertilisation and weed control management strategies, the latter being compared regarding their effectiveness in reducing pathogen transfer. Different field trials with organic fertilisation will be performed in 2006 and 2007. The contents of Enterobacteriaceae, coliforms and E. coli are used as sanitation indicators for the assessment of the effectivity of weed control strategies. Therefore, the contents will be measured in soil as well as in plants. Furthermore, the quality of lettuce will be acquired by analyses of nutrient composition and morphological measurements.

Teilprojekt C

Das Projekt "Teilprojekt C" wird vom Umweltbundesamt gefördert und von Henkel AG & Co. KGaA durchgeführt. Die überwiegenden Produkte unseres täglichen Lebens werden mit Hilfe von Klebstoffen hergestellt, die traditionell 'ein Leben lang' halten sollten. Ökologische und ökonomische Aspekte erfordern aber zwingend neue Klebstofffunktionen für eine nachhaltige Kreislaufwirtschaft. Ziel des Vorhabens ist die Etablierung der neuen Plattformtechnologie des elektrischen Entklebens auf 'Knopfdruck' (Debond-on-Command). Die Biohybrid-Klebstoffe ermöglichen den Technologiesprung durch Schaltung der Adhäsion an der Klebegrenzfläche und zeigen die enormen Potentiale der industriellen Bioökonomie. Die Konvergenz von Biotechnologie, Polymerchemie, Ingenieurs- und Informationswissenschaften führt zu neuartigen Produkten, wie 'Smart Tags' die per Smartphone abgelöst werden können und Verfahren, die erweiterte Reparatur- und Rezyklierungsstrategien ermöglichen. Ausgehend von Aminosäuren, als biologischer Feedstock, werden über einen wasserbasierten Prozess Klebstoffe zugänglich, die schaltbar zu einer starken Reduktion der Klebkraft befähigt sind. Die neu zugängliche Funktion wird an der elektrischen Abschaltung der Klebkraft einer Metall/Glas -Verklebung an einem Prototyp im Mobiltelefon-Format dargelegt. Die Potentiale der Verwertung im Bereich 'Smart Packaging' werden anhand integrierter 'bonding/debonding'-Bauelemente, die auf nicht-leitfähige Substrate gedruckt werden, erhoben. Die Kombination mit Energieträgern, Mikrochips und sensorischen Elementen könnte integriertes Schalten der Adhäsion durch Fingerabdruck oder ferngesteuert über WLAN erlauben. Die Einkopplung von Smart-Device-Elektronik in Materialien über elektrisch-schaltbare Klebstoffe, eröffnet neue Zukunftsfelder und die industrielle Bioökonomie von morgen lässt die Klebstoffherstellung über weiße Biotechnologieprozesse möglich erscheinen.

Teilprojekt A

Das Projekt "Teilprojekt A" wird vom Umweltbundesamt gefördert und von Humboldt-Universität zu Berlin, Institut für Chemie durchgeführt. Die überwiegenden Produkte unseres täglichen Lebens werden mit Hilfe von Klebstoffen hergestellt, die traditionell 'ein Leben lang' halten sollten. Ökologische und ökonomische Aspekte erfordern aber zwingend neue Klebstofffunktionen für eine nachhaltige Kreislaufwirtschaft. Ziel des Vorhabens ist die Etablierung der neuen Plattformtechnologie des elektrischen Entklebens auf 'Knopfdruck' (Debond-on-Command). Die Biohybrid-Klebstoffe ermöglichen den Technologiesprung durch Schaltung der Adhäsion an der Klebegrenzfläche und zeigen die enormen Potentiale der industriellen Bioökonomie. Die Konvergenz von Biotechnologie, Polymerchemie, Ingenieurs- und Informationswissenschaften führt zu neuartigen Produkten, wie 'Smart Tags' die per Smartphone abgelöst werden können und Verfahren, die erweiterte Reparatur- und Rezyklierungsstrategien ermöglichen. Ausgehend von Aminosäuren, als biologischer Feedstock, werden über einen wasserbasierten Prozess Klebstoffe zugänglich, die schaltbar zu einer starken Reduktion der Klebkraft befähigt sind. Die neu zugängliche Funktion wird an der elektrischen Abschaltung der Klebkraft einer Metall/Glas -Verklebung an einem Prototyp im Mobiltelefon-Format dargelegt. Die Potentiale der Verwertung im Bereich 'Smart Packaging' werden anhand integrierter 'bonding/debonding'-Bauelemente, die auf nicht-leitfähige Substrate gedruckt werden, erhoben. Die Kombination mit Energieträgern, Mikrochips und sensorischen Elementen könnte integriertes Schalten der Adhäsion durch Fingerabdruck oder ferngesteuert über WLAN erlauben. Die Einkopplung von Smart-Device-Elektronik in Materialien über elektrisch-schaltbare Klebstoffe, eröffnet neue Zukunftsfelder und die industrielle Bioökonomie von morgen lässt die Klebstoffherstellung über weiße Biotechnologieprozesse möglich erscheinen.

Teilprojekt B

Das Projekt "Teilprojekt B" wird vom Umweltbundesamt gefördert und von Fraunhofer-Institut für Angewandte Polymerforschung durchgeführt. Die überwiegenden Produkte unseres täglichen Lebens werden mit Hilfe von Klebstoffen hergestellt, die traditionell 'ein Leben lang' halten sollten. Ökologische und ökonomische Aspekte erfordern aber zwingend neue Klebstofffunktionen für eine nachhaltige Kreislaufwirtschaft. Ziel des Vorhabens ist die Etablierung der neuen Plattformtechnologie des elektrischen Entklebens auf 'Knopfdruck' (Debond-on-Command). Die Biohybrid-Klebstoffe ermöglichen den Technologiesprung durch Schaltung der Adhäsion an der Klebeg renzfläche und zeigen die enormen Potentiale der industriellen Bioökonomie. Die Konvergenz von Biotechnologie, Polymerchemie, Ingenieurs- und Informationswissenschaften führt zu neuartigen Produkten, wie 'Smart Tags' die per Smartphone abgelöst werden können und Verfahren, die erweiterte Reparatur- und Rezyklierungsstrategien ermöglichen. Ausgehend von Aminosäuren, als biologischer Feedstock, werden über einen wasserbasierten Prozess Klebstoffe zugänglich, die schaltbar zu einer starken Reduktion der Klebkraft befähigt sind. Die neu zugängliche Funktion wird an der elektrischen Abschaltung der Klebkraft einer Metall/Glas -Verklebung an einem Prototyp im Mobiltelefon-Format dargelegt. Die Potentiale der Verwertung im Bereich 'Smart Packaging' werden anhand integrierter 'bonding/debonding'-Bauelemente, die auf nicht-leitfähige Substrate gedruckt werden, erhoben. Die Kombination mit Energieträgern, Mikrochips und sensorischen Elementen könnte integriertes Schalten der Adhäsion durch Fingerabdruck oder ferngesteuert über WLAN erlauben. Die Einkopplung von Smart-Device-Elektronik in Materialien über elektrisch-schaltbare Klebstoffe, eröffnet neue Zukunftsfelder und die industrielle Bioökonomie von morgen lässt die Klebstoffherstellung über weiße Biotechnologieprozesse möglich erscheinen.

Stickstoffdynamik in Komposten und bei der Anwendung

Das Projekt "Stickstoffdynamik in Komposten und bei der Anwendung" wird vom Umweltbundesamt gefördert und von Technische Universität Hamburg-Harburg, Forschungsschwerpunkt 04, Arbeitsbereich Abfallwirtschaft und Stadttechnik durchgeführt. Die Frage nach den Risiken einer Kompostanwendung gewinnt aufgrund des steigenden Kompostaufkommens zunehmend an Bedeutung. Eine intensive Kompostnutzung koennte beispielsweise durch hohe Dosierungen oder lange Anwendungszeitraeume zu einer Auswaschung von Nitrat in das Grundwasser fuehren. Die Beurteilung der Komposte hinsichtlich ihres Auswaschungspotentials stellt ein Problem dar. Die Gesamtstickstoffgehalte sind nicht aussagekraeftig, da Stickstoff im Kompost nur zu geringem Teil in loeslicher Form vorliegt. Er ist groesstenteils in der mikrobiellen Biomasse und in Huminstofffraktionen gebunden und wird nach der Kompostaufbringung langsam und unkalkulierbar in die loesliche Form ueberfuehrt. Ziel des Projektes ist es, die Naehrstoffdynamik waehrend der Kompostierung bzw. der Vergaerung zu erfassen. Der Schwerpunkt wird hierbei auf den Stickstoff gelegt. Es sollen aber auch Kalium und Phosphor Beruecksichtigung finden. Weiterhin werden Moeglichkeiten zur Erzeugung von anwendungsgerechten Komposten mit definierten Naehrstoffzusammensetzungen und -gehalten fuer verschiedene Einsatzgebiete wie Duengung oder Erosions- und Verschlaemmungsschutz untersucht. Als Ausgangssubstrate fuer die Forschungsarbeiten kommen diverse Modellbioabfaelle zum Einsatz. Die Abfallbehandlungen werden in 100 L-Bioreaktoren mit regulierbarer Substrattemperatur und Belueftung durchgefuehrt. Zur Charakteristik und Bilanzierung der Naehrstoffumsetzungen werden die vorhandenen sowie die entstehenden stickstoffhaltigen Komponenten in der Gasphase, im Sickerwasser sowie in der Feststofffraktion erfasst. Weiterhin erfolgt eine Analyse der relevanten Kalium- und Phosphorverbindungen. Zur Erarbeitung von Steuerungsmoeglichkeiten fuer die Naehrstoffzusammensetzung im Kompost werden der Einfluss von Struktur und Zusammensetzung des Abfalls sowie von verschiedenen Betriebsparametern wie der Belueftung, der Temperatur, dem pH-Wert und dem Feuchtegehalt des Substrates untersucht. Der Bioabfall wird waehrend der biologischen Behandlung einer Vielzahl von Umsetzungen unterzogen. Fuer die Erzeugung von Qualitaetskomposten kristallisierte sich die Ammonifikation als besonders bedeutsam heraus. Bei dieser Reaktion werden Ameisensaeuren zu Ammonium/Ammoniak umgesetzt. Der Ammoniakaustrag ueber die Gasphase kann in Abhaengigkeit vom pH-Wert des Substrates und der Belueftungsrate variiert werden. Das im Feststoff verbleibende Ammonium wird weiter mikrobiell umgesetzt.

Further treatment of digested blackwater for extraction of valuable components and conversion to dry matter

Das Projekt "Further treatment of digested blackwater for extraction of valuable components and conversion to dry matter" wird vom Umweltbundesamt gefördert und von Technische Universität Hamburg-Harburg, Institut für Abwasserwirtschaft und Gewässerschutz B-2 durchgeführt. Phosphorus and nitrogen are valuable and should not be wasted or even worse recycled to the environment. An important resource in the sludge is nutrients which can be utilized through using sludge as fertilizer in the agriculture. Wastewater and excreta contain valuable nutrients that can be used in agriculture and aquaculture. Most of the nutrients, like phosphorous (P) and nitrogen (N), that a person consumes end up in the excreta. Nutrients are needed in developing countries as much as developed ones. Therefore, they should not be wasted. In nature there is no waste, all products of living things are used as raw materials by others (Esrey et al, 1998). Ecological sanitation systems (also called ecosan') are closed-loop systems, which treat human excreta as a resource. In this system, excreta are processed on site until they are free of pathogenic (disease-causing) organisms. Afterwards, sanitized excreta are recycled by using them for agricultural purposes. Key features of ecosan are therefore: - prevention of pollution and disease caused by human excreta; - treatment of human excreta as a resource rather than as a waste product; and - recovery and recycling of the nutrients. The problem of nutrient recovery from municipal sewage or excess sludge is not a new problem. In the literature, several papers have addressed the recovery of ammonia or phosphate from industrial and domestic wastewater, but not much with black water. So far many attempts have been made to control the process of self-deposition and recover nutrients as a fertilizer, which can be used directly for agricultural purposes as ecological sanitation advises. The aim of this research project is to find out further treatment methods of digested black water for extraction of valuable nutrients and convert them to dry matter and find solutions for dense urban areas and make usable compounds easier transportable.

1 2 3 4 510 11 12