API src

Found 731 results.

Klimawandelbedingte Mortalitäts- und Wachstumstrends als Grundlage für bundesweit vergleichende Baumarteneignungsbeurteilungen, Teilvorhaben 07: Modellentwicklung, Modellierung, Modellverifizierung Baumarteneignung, Fichtenrisiko und klimasensitiver Jahrringzuwachs bei Fichte

Als Grundlage für die Anpassung der Wälder an den Klimawandel werden verbesserte multikriterielle Eignungsempfehlungen für heute wichtige Baumarten erarbeitet (Fichte, Kiefer, Europäische Lärche, Douglasie, Tanne, Buche, Trauben- und Stieleiche, Birke, Bergahorn, Hainbuche, Roteiche). Hierfür werden existierende Verfahren zur Baumarteneignungsbeurteilung aus allen Bundesländern zusammengestellt und verglichen. Entsprechend ergibt sich eine Pluralität der Eignungseinstufungen in den Ländern, die die Grundlage für die angestrebten Verbesserungen darstellen. An einigen der Länderversuchsanstalten sind zu diesem Zweck in den letzten Jahren bereits standort- bzw. klimasensitive Standort-Leistungs- und Risikomodelle entwickelt worden. Die verbesserten Eignungsempfehlungen sollen für differenziertere strategische Waldbauplanungen und mittelfristige forstbetriebliche Entscheidungen bereitgestellt werden. Das Verwertungsziel liegt in der Abschätzung der Zukunftsfähigkeit von Baumarten und Baumartenmischungen unter sich verändernden Umweltbedingungen. Eignungsempfehlungen und die sie bestimmenden Risiko- und Leistungsprojektionen werden am bundesweiten Punkteraster der Bodenzustandserhebung (BZE), Waldzustandserhebung (WZE) und Bundeswaldinventur (BWI) sowie für einige länderübergreifende 'Nachbarschaftsregionen' flächig abgeleitet bzw. angewendet. Auf dieser Grundlage erfolgen anschließend Vergleiche der Eignungsempfehlungen in den 'Nachbarschaftsregionen' benachbarter Länder sowie zwischen den aktuellen (häufig nur regional gültigen) expertenbasierten Verfahren und den modellgestützt adaptierten Verfahren. Dieser Vergleich wird durch Sensitivitätsanalysen über große Standortgradienten ergänzt. Ausgehend von rezenten Klimabedingungen (1981-2010) werden als zeitliche Korridore die nahe (2021-2050) und ferne Zukunft (2071-2100) unter Berücksichtigung der zwei Klimaszenarien RCP 4.5 und 8.5 betrachtet.

Monoklonale Antikoerper fuer Mecoprop

Es wurden mehrere monoklonale Antikoerper (mAK) gegen Mecoprop hergestellt, ein Herbizid aus der Klasse der haeufig eingesetzten Phenoxycarbonsaeuren. Diese wurden auf ihre Sensitivitaet und Kreuzreaktivitaet getestet. Ein mAK wurde fuer weitere Tests ausgewaehlt. Mit diesem wurde ein Enzymimmunoassay (EIA) entwickelt, der einen Testmittelpunkt von ca 3 myg/L zeigte mit einer Nachweisgrenze zwischen 0,2 und 0,3 myg/L. Im folgenden wurden die Kreuzreaktivitaeten (KR) des mAK gegenueber anderen Phenoxycarbonsaeuren bestimmt. Die beste Erkennung erfolgte bei R(+)-Mecoprop, der Herbizid-aktiven Substanz, mit einer Kreuzreaktivitaet von 118 Prozent im Vergleich zum Mecoprop-Razemat (100 Prozent). Das Stereoisomer, S(-)-Mecoprop, wurde dagegen nicht erkannt (KR kleiner 1 Prozent). Die Bindung von 2,4-D, 2,4-DB, 2,4,5-T und MCPA war ebenfalls sehr gering (KR kleiner/gleich 5 Prozent).

Schwerpunktprogramm (SPP) 1803: EarthShape: Earth Surface Shaping by Biota, SECCO-Chile: Einfluss und Wechselwirkungen holozäner hydrologischer Veränderungen auf Vegetation, Verwitterung, Erosion und Sedimentablagerung in Chile

Die Erdoberfläche verändert sich stetig aufgrund komplexer Wechselwirkungen zwischen Klima, Hydrologie, Vegetation, Verwitterung, Erosion und Sedimentablagerung und beeinflusst so unseren Lebensraum. Die Mechanismen sowie die Magnitude und zeitliche Abfolge mit der sich klimatische Veränderungen auf Vegetation, Verwitterung, Erosion und Sedimentdynamiken auswirken, sind jedoch nur unzureichend verstanden - dies erschwert die Interpretation von marinen Sedimentarchiven in Bezug auf das Paläoklima und Erdoberflächenprozesse. In marinen Sedimentarchiven vor der chilenischen Küste finden sich aber konkrete Hinweise auf einen direkten Zusammenhang zwischen Klima und Erdoberflächenprozessen, denn während an Land zu Beginn des Holozäns zunehmende Trockenheit einsetzt, verringern sich zeitgleich die Sedimentakkumulation im Ozean. In diesem Projekt wollen wir die Magnituden und zeitlichen Abfolgen von Änderungen in der Vegetation, Hydrologie, Verwitterungs- und Erosionsraten und Sedimentablagerung im Pazifischen Ozean vom letzten glazialen Maximum (LGM) bis heute entlang der chilenischen Küste quantifizieren. In diesem Projekt vernetzen wir die Forschungsdisziplinen der Sedimentologie, Geochemie und Biologie um die Feedbacks zwischen diesen Parametern zu untersuchen. Wir postulieren, dass der Einfluss der deglazialen Klimaveränderung auf die Landschaftsentwicklung stark durch die Vegetation moduliert ist. Dadurch existieren Zeitverzögerungen zwischen den untersuchten Parametern. Mit diesem Antrag schlagen wir einen neuen Ansatz vor, der auf der Anwendung hochspezialisierter organisch- und anorganisch-geochemischer Proxy Methoden basiert. Dazu sollen Biomarker Isotopenanalysen (Delta D, Delta 13C, als Proxy für Vegetation und Hydrologie), stabile Lithium Isotopenanalysen (Delta 7Li, als Proxy für Verwitterung) und kosmogene Nuklide (meteorische 9Be/10Be Verhältnisse, als Proxy für Erosion) kombiniert werden und an den gleichen marinen Sedimentkernen angewandt werden. In einem ersten Arbeitspaket (WP1) werden wir die heutigen räumlichen Unterschiede entlang des ausgeprägten N-S Klimagradienten der chilenischen Küste evaluieren und diese Proxies auf ihre Sensitivität kalibrieren. Dazu ist die Analyse der modernen Erosionsprodukte, die durch die Flüsse in den Ozean transportiert werden, sowie mariner Oberflächensedimente vorgesehen. In AP 2 (WP2) wenden wir die so kalibrierten Methoden an drei marinen Sedimentkernen entlang der chilenischen Küste an, um Veränderungen in Klima, Vegetation, Verwitterung, Erosion und Sedimenteintrag sowie deren zeitliche Abfolge und räumlichen Muster am gleichen Material zu rekonstruieren. Diese neuartige Kombination von Proxy Methoden und deren detaillierte Kalibration und Sensitivitätsanalyse werden es ermöglichen, die Mechanismen von räumlichen und zeitlichen Unterschieden in der Reaktion von Vegetation, Verwitterung, Erosion, und Sedimentablagerung auf eine klimatisch-induzierte hydrologische Veränderungen zu quantifizieren.

Starkregen- und Überflutungsgefahren 2025

Die zwei Kartenthemen bestehen jeweils aus mehreren thematisch und räumlich unterschiedlichen Ebenen. Die Ebenen sind teilweise voneinander unabhängig aussagekräftig. Die Starkregenhinweiskarte basiert maßgeblich auf folgenden Produkten: Hinweiskarte Starkregen des Bundesamts für Kartographie und Geodäsie topografische Senkenanalyse der BWB, starkregenbedingte Feuerwehreinsätze der Berliner Feuerwehr für das Land Berlin. Die Hinweiskarte Starkregen wurde vom Bundesamt für Kartographie und Geodäsie (BKG) in Zusammenarbeit mit den Ländern für die gesamte Fläche Nord- und Ostdeutschlands (11 Bundesländer) im Zeitraum 2023/2025 erarbeitet. Für Berlin-Brandenburg wurde dies in einem Los durchgeführt. Die Karte zeigt die simulierten Überflutungsflächen und -tiefen sowie Fließgeschwindigkeiten /-richtungen für folgende Szenarien: außergewöhnliches Ereignis: 100-jährliches Niederschlagsereignis (T = 100a, Dauerstufe 1 Stunde) mit einem Euler-Typ II Niederschlagsverteilung. extremes Ereignis: 100 mm Niederschlagsereignis in einer Stunde (T extrem) mit einem Blockregenverteilung. Grundlage hierfür sind diverse Geodaten des Bundes und der Länder, insbesondere ein hochaufgelöstes digitales Geländemodell sowie Daten zur Flächennutzung, wie zum Beispiel zur Bebauung. Die Ergebnisse basieren auf einer Modellierung der oberflächlich abfließenden Regenmenge, ähnlich dem Modell für die Starkregengefahrenkarte Berlins (siehe unten). Allerdings wurden die Versickerungsleistung des Untergrundes und das Kanalnetz nicht in die Berechnungen einbezogen und stellen somit eine erhebliche Vereinfachung dar (weitere Informationen finden sich hier ). Die topographische Senkenanalyse ist das Ergebnis einer Analyse des Digitalen Geländemodells (ATKIS® DGM – Digitales Geländemodell, 2021) unter Berücksichtigung der Gebäudeflächen und Durchfahrten sowie Geschossinformationen (ALKIS®- Amtliches Liegenschaftskatasterinformationssystem, 2021), welche durch die BWB im Jahr 2022 durchgeführt wurde. Es erfolgte eine GIS-Analyse zur Ermittlung der Senken, Fließwege und Abflussakkumulation basierend auf dem vorgeglätteten DGM. Die Gebäude wurden als nicht überströmbare Abflusshindernisse in das DGM integriert und Senken in umschlossenen Innenhöfen ausgeschlossen. Folgende Senkenattribute wurden basierend auf einer zonalen Statistik abgeleitet und werden in den Sachdaten dargestellt: Fläche Einzugsgebiet (DrainArea [m²]) Fläche Senke (FillArea [m²]) Maximale Tiefe der Senke (FillDepth [cm]) Geländehöhe Senkenbasis (BottomElev [m]) Geländehöhe maximaler Füllstand (FillElev [m]) Füllvolumen (FillVolume [m³]) Basierend auf folgenden Parametern wurden die relevanten Senken ermittelt: Senkentiefe mindestens 20 cm, Senkenfläche mindestens 4 m², Senkenvolumen mindestens 2 m³, Senkeneinzugsgebiet mindestens 200 m². Der Datensatz der Feuerwehreinsätze zeigt Meldungen der Berliner Feuerwehr in Bezug auf ,,Wasser”, welche anhand des Meldungstextes mit Starkregen in Verbindung zu bringen sind und an Starkregentagen aufgenommen wurden. Der Datensatz wurde durch die Berliner Feuerwehr erfasst und durch die BWB prozessiert (sogenannter Überflutungsatlas). Die BWB haben die Feuerwehreinsätze mit den Niederschlagsdaten der BWB an diesem Tag und Ort abgeglichen und ein anzunehmendes Wiederkehrintervall (T) des aufgetretenen Niederschlagsereignisses zugeordnet. Dopplungen wurden entfernt. Folgende Attribute wurden abgeleitet und werden in den Sachdaten dargestellt: Datum (angelegt) Wiederkehrintervall (T) Ortsteil Die Daten wurden räumlich über die Berliner Adressdatei geocodiert. Der Zeitraum der Meldungen umfasst einerseits den Zeitraum 2005 bis 2017 anderseits 2018 bis 2021. Diese Datensätze wurden zu einem Datensatz von 2005 bis September 2021 zusammengefasst. Zwecks Aggregierung und Darstellung wurden die Daten auf Blockteilflächen und Straßenflächen des Informationssystems Stadt und Umwelt (ISU5 2021) zusammengefasst und klassifiziert. In Berlin wird die Analyse zu Starkregengefahren auf Basis eines gekoppelten 1D-Kanalnetz und eines 2D-Oberflächenabflussmodells (1D/2D gekoppeltes Modell) durchgeführt. Bei diesem Verfahren wird die Berechnung der Abflussvorgänge im Kanalnetz (1D) mit der zweidimensionalen hydrodynamischen Modellierung der Oberflächenabflüsse (2D) kombiniert, um einen bidirektionalen Austausch von Wasservolumen, d.h. einen Austausch in beide Richtungen, zwischen Oberfläche und Kanalnetz an den Schächten und Straßenabläufen zu berücksichtigen. Die Erarbeitung der Starkregengefahren erfolgt basierend auf der von den BWB und der für Wasserwirtschaft zuständigen Senatsverwaltung gemeinsam entwickelten Leistungsbeschreibung „Erstellung von Starkregengefahrenkarten für Berliner Misch- bzw. Regenwassereinzugsgebiete“. Voraussetzung sind Daten zu Topographie, Gebäuden, Straßen, Versiegelung und bodenkundlichen Kennwerten sowie Kanalnetzdaten . Für die 1D-Modellierung des Kanalnetzes wird das aktuelle Kanalnetz (Misch- oder Trennkanalisation) der BWB verwendet. Die Entwässerungsinfrastruktur wird durch ein Kanalnetzmodell abgebildet, wobei dieses u.a. Schächte, Straßenabläufe, Haltungen und Haltungsflächen berücksichtigt. Auf Grundlage des digitalen Geländemodells wird ein detailliertes, lückenloses und überlappungsfreies 2D-Oberflächenmodell erstellt und um standardisierte Dachformen der Gebäudedaten ergänzt. Mauern oder Bordsteine werden durch Bruchkanten berücksichtigt. Die Oberflächenbeschaffenheit des Untersuchungsgebietes beeinflusst die Abflussbildung und -konzentration, daher wird basierend auf den entsprechenden Datengrundlagen (siehe Kapitel Datengrundlage) zwischen Gebäudeflächen, Straßen und Wegen, Gewässer und Grünflächen unterschieden. Mauern, Bordsteine oder ähnliche linienhafte Elemente können Abflusshindernisse darstellen, werden aufgrund der Auflösung jedoch nicht durch das DGM abgebildet und werden – falls sie abflussrelevant sind – nachträglich über Bruchkanten berücksichtigt. Maßgebliche Datensätze für Gebäudeflächen sind die ALKIS-Gebäude und der Datensatz der Gründächer (im Bereich der Kleingärten). Bei der Abflussbildung von Dachflächen wird zwischen einleitenden und nicht einleitenden Dächern basierend auf den Daten der Erfassung des Niederschlagsentgelts unterschieden. Einleitende Dächer werden in der Modellierung als direkt an den Kanal angeschlossen betrachtet (1D-Abflussbildung). Bei nicht einleitenden Dächern erfolgt die Abflussbildung über das Oberflächenabflussmodell. In diesem Fall wird der effektive Niederschlag auf die umliegende Oberfläche verteilt, indem das Prinzip der Randverteilung angewendet wird. Straßen und Wege umfassen alle befestigten Flächen, wie Straßen, Wege, Plätze und private versiegelte Flächen. Die Abflussbildung dieser Flächen erfolgt über das 2D-Oberflächenabflussmodell und es wird nicht zwischen einleitend und nicht einleitend unterschieden. Als Gewässerflächen werden alle stehenden Gewässer und Fließgewässer aus dem ALKIS-Datensatz angenommen. Alle restlichen Flächen werden als Grünflächen angesetzt. Für diese Flächen werden im Modell entsprechende Abflussparameter, wie Benetzungs- und Muldenverluste sowie Anfangs- und Endabflussbeiwerte, basierend auf Literaturwerten, angesetzt. Das Modell bildet den Rückhalt der Vegetation (Interzeption), die Versickerungsfähigkeit des Bodens und die Oberflächenrauheiten ab. Für Hochwasserrisikogebiete (SenMVKU, 2024) wurden in Berlin im Rahmen der Hochwasserrisikomanagementrichtlinie bereits Hochwassergefahrenkarten erarbeitet und Überschwemmungsgebiete ausgewiesen. Um keine Überschneidungen mit den Starkregengefahrenkarten zu erzielen, werden diese Gewässer als hydraulisch voll leistungsfähig angenommen. Außerdem wird für bestimmte Gewässer (z.B. Gewässer 1. Ordnung, Nordgraben) angenommen, dass diese bei kurzen Starkregenereignissen ausreichend hydraulisch leistungsfähig sind. Ein „Anspringen“ ist erst bei länger anhaltenden, räumlich ausgeprägteren Niederschlagsereignissen zu erwarten. Das Modell geht davon aus, dass ein Austritt von Wasser und somit eine Überflutung von diesen Gewässern methodisch nicht möglich ist. Außerdem werden diese Gewässer mit einem einheitlichen Vorflutwasserstand für ein mittleres Hochwasser (für das seltene und außergewöhnliche Ereignis) sowie für ein 100-jährliches Hochwasser (für das extreme Ereignis) angenommen. Im Modell werden für das seltene und außergewöhnliche Ereignis die tatsächlichen Gewässerverrohrungen bzw. -durchlässe angesetzt. Für das Szenario Extremereignis gilt, dass Durchlässe teilverklaust (Durchmesser > 0,5 m (> DN 500)) oder vollständig verklaust (Durchmesser ≤ 0,5 m (≤ DN 500)) angenommen werden, es sei denn, ein Raumrechen verhindert eine Verklausung. Mit dem aufgestellten Modell werden die Überflutungen von Niederschlagsszenarien mit unterschiedlicher Jährlichkeit berechnet, wobei für die Niederschlagshöhen die koordinierte Starkniederschlagsregionalisierung und -auswertung (KOSTRA) des Deutschen Wetterdienstes (DWD) zugrunde gelegt werden. Es kommt die Revision des Datensatzes KOSTRA-DWD-2020 zum Einsatz. Folgende Szenarien werden im Rahmen des Starkregenrisikomanagements in Berlin betrachtet: seltenes Ereignis : 30 bzw. 50-jährliches Niederschlagsereignis (T = 30a bzw. T = 50a, Dauerstufe 180 Min.) mit einer Euler-Typ II Niederschlagsverteilung außergewöhnliches Ereignis : 100-jährliches Niederschlagsereignis (T = 100a, Dauerstufe 180 Min.) mit einer Euler-Typ II Niederschlagsverteilung extremes Ereignis : 100 mm Niederschlagsereignis in einer Stunde (T extrem) mit einer Blockregenverteilung. Basierend auf einer Sensitivitätsanalyse wurde die maßgebliche Dauerstufe mit 180 Minuten für Berlin ermittelt, wobei hier der höchste Wasserstand als maßgeblich betrachtet wird. Für die Intensität und für den zeitlichen Niederschlagsverlauf wird die Euler-Typ II Verteilung (seltenes und außergewöhnliches Ereignis) oder ein Blockregen mit einer Regendauer von 60 Minuten (extremes Ereignis) angenommen. Neben der Beregnungszeit, die der Dauerstufe der betrachteten Szenarien entspricht, wird in der Modellierung jeweils eine einstündige Nachlaufzeit berücksichtigt. Die Plausibilitätsprüfung erfolgt aufgrund der Ergebnisse des außergewöhnlichen Ereignisses. Es werden unplausible Abflusspfade und Wasseransammlungen ggf. durch Ortsbegehungen geprüft, und nicht berücksichtigte, hydraulisch relevante Strukturen nachgepflegt. Die Methode ist sehr daten- und rechenintensiv, so dass sie nicht berlinweit, sondern nur für ausgewählte Bereiche sukzessive angewandt werden kann. Dafür bietet sie relativ genaue und belastbare Ergebnisse und mit der Methode lassen sich die Abflussbildung und Abflusskonzentration nachvollziehen. Es werden kontinuierlich weitere Gebiete mit der gekoppelten 1D/2D Simulation gerechnet und anschließend online verfügbar gemacht. Die nachfolgende Tabelle zeigt, für welche Gebiete bisher Starkregengefahrenkarten erarbeitet wurden.

Tree-ring width measurements of Douglas fir from Herbrechtingen from 1922 to 2022

Wood samples from Douglas fir trees were taken using an increment borer. From each tree two opposing increment cores were taken at breast height. The sampled trees stood in an area of ~50x50 meters. Total ring width was measured and digitized. The resulting two radii measurements of each tree were visually synchronized and averaged to form a tree-ring series. Additionally, metadata were collected such as tree height, circumference and provenance (coastal, interior). The tree-ring data were used to investigate the resilience, resistance and recovery of the Douglas fir trees to severe drought events and to perform climate sensitivity analysis. This tree-ring dataset was part of a sampling campaign to assess the growth potential of Douglas fir trees until the year 2100. Annual tree growth variability until 2100 was modeled for Germany (including the river basins draining to Germany) with a spatial resolution of 12x12 km using regional climate projections ensemble.

Tree-ring width measurements of Douglas fir from Drachhausen from 1936 to 2022

Wood samples from Douglas fir trees were taken using an increment borer. From each tree two opposing increment cores were taken at breast height. The sampled trees stood in an area of ~50x50 meters. Total ring width was measured and digitized. The resulting two radii measurements of each tree were visually synchronized and averaged to form a tree-ring series. Additionally, metadata were collected such as tree height, circumference and provenance (coastal, interior). The tree-ring data were used to investigate the resilience, resistance and recovery of the Douglas fir trees to severe drought events and to perform climate sensitivity analysis. This tree-ring dataset was part of a sampling campaign to assess the growth potential of Douglas fir trees until the year 2100. Annual tree growth variability until 2100 was modeled for Germany (including the river basins draining to Germany) with a spatial resolution of 12x12 km using regional climate projections ensemble.

Modellanpassung von generischen Rotorblättern für Laufzeitverlängerungsgutachten mittels optischer 3D-Messtechnik und experimenteller Modalanalyse, Teilvorhaben: Modellvalidierung und -anwendung

Das Ziel des Forschungsvorhabens BLADAPTION ist die Entwicklung eines neuartigen Verfahrens für die zuverlässige Erstellung von Laufzeitverlängerungsgutachten für den Weiterbetrieb von Windenergieanlagen nach ihrer Auslegungslebensdauer. Die zuverlässigen Laufzeitverlängerungsgutachten basieren auf einer präzisen Abbildung der realen Windenergieanlage, in dem unbekannte Aerodynamik- und Strukturdetails über ein entwickeltes Verfahren bestimmt werden. Dieses Verfahren basiert auf Vermessungsdaten aus dem Feld, welche über eine Optimierungsarchitektur dazu verwendet werden, diskrete Strukturdetails zu bestimmen und hierüber die Angleichung eines zugrunde gelegten Berechnungsmodells an die Realität ermöglichen. Die strukturelle Analyse der Gesamtanlage kann entsprechend zuverlässiger durchgeführt werden, da die Modellunsicherheiten der Komponente Rotorblatt stark reduziert werden. Ein Ziel der Messmethodenentwicklung ist die Minimierung des Anlagenstillstands und somit der Kosten, was die Akzeptanz des Verfahrens bei den Anlagenbetreibern signifikant erhöht. Das Teilvorhaben der P. E. Concepts GmbH umfasst die Modellvalidierung und -anwendung. Zunächst wird das WEA-Modell zur aeroelastischen Simulation auf Basis zur Verfügung stehender Daten aufgebaut. Die Unsicherheit in der Modellierung der Modellparameter, die das Rotorblatt betreffen, wird in diesem Zuge mit einer Sensitivitätsanalyse bewertet. In einem zweiten Schritt werden die standortspezifischen Windbedingungen aus den Windmessungen so verarbeitet, dass die für die aeroelastische Simulation Verwendung finden können. Im Nachgang erfolgt die Anpassung des generischen Modells auf Basis der Ergebnisse. Es werden dann die Restnutzungsdauern der WEA-Komponenten sowohl mit dem generischen als auch mit dem angepassten Modell berechnet. Die Ergebnisse werden in einem beispielhaften Bericht, wie er in der Praxis Anwendung finden würde, dokumentiert.

Klimawandelbedingte Mortalitäts- und Wachstumstrends als Grundlage für bundesweit vergleichende Baumarteneignungsbeurteilungen, Teilvorhaben 08: Herleitung Baumarteneignung nach Landesverfahren in NRW und in Nachbarschaftsregionen

Als Grundlage für die Anpassung der Wälder an den Klimawandel werden verbesserte multikriterielle Eignungsempfehlungen für heute wichtige Baumarten erarbeitet (Fichte, Kiefer, Europäische Lärche, Douglasie, Tanne, Buche, Trauben- und Stieleiche, Birke, Bergahorn, Hainbuche, Roteiche). Hierfür werden existierende Verfahren zur Baumarteneignungsbeurteilung aus allen Bundesländern zusammengestellt und verglichen. Entsprechend ergibt sich eine Pluralität der Eignungseinstufungen in den Ländern, die die Grundlage für die angestrebten Verbesserungen darstellen. An einigen der Länderversuchsanstalten sind zu diesem Zweck in den letzten Jahren bereits standort- bzw. klimasensitive Standort-Leistungs- und Risikomodelle entwickelt worden. Die verbesserten Eignungsempfehlungen sollen für differenziertere strategische Waldbauplanungen und mittelfristige forstbetriebliche Entscheidungen bereitgestellt werden. Das Verwertungsziel liegt in der Abschätzung der Zukunftsfähigkeit von Baumarten und Baumartenmischungen unter sich verändernden Umweltbedingungen. Eignungsempfehlungen und die sie bestimmenden Risiko- und Leistungsprojektionen werden am bundesweiten Punkteraster der Bodenzustandserhebung (BZE), Waldzustandserhebung (WZE) und Bundeswaldinventur (BWI) sowie für einige länderübergreifende 'Nachbarschaftsregionen' flächig abgeleitet bzw. angewendet. Auf dieser Grundlage erfolgen anschließend Vergleiche der Eignungsempfehlungen in den 'Nachbarschaftsregionen' benachbarter Länder sowie zwischen den aktuellen (häufig nur regional gültigen) expertenbasierten Verfahren und den modellgestützt adaptierten Verfahren. Dieser Vergleich wird durch Sensitivitätsanalysen über große Standortgradienten ergänzt. Ausgehend von rezenten Klimabedingungen (1981-2010) werden als zeitliche Korridore die nahe (2021-2050) und ferne Zukunft (2071-2100) unter Berücksichtigung der zwei Klimaszenarien RCP 4.5 und 8.5 betrachtet.

Klimawandelbedingte Mortalitäts- und Wachstumstrends als Grundlage für bundesweit vergleichende Baumarteneignungsbeurteilungen

Als Grundlage für die Anpassung der Wälder an den Klimawandel werden verbesserte multikriterielle Eignungsempfehlungen für heute wichtige Baumarten erarbeitet (Fichte, Kiefer, Europäische Lärche, Douglasie, Tanne, Buche, Trauben- und Stieleiche, Birke, Bergahorn, Hainbuche, Roteiche). Hierfür werden existierende Verfahren zur Baumarteneignungsbeurteilung aus allen Bundesländern zusammengestellt und verglichen. Entsprechend ergibt sich eine Pluralität der Eignungseinstufungen in den Ländern, die die Grundlage für die angestrebten Verbesserungen darstellen. An einigen der Länderversuchsanstalten sind zu diesem Zweck in den letzten Jahren bereits standort- bzw. klimasensitive Standort-Leistungs- und Risikomodelle entwickelt worden. Die verbesserten Eignungsempfehlungen sollen für differenziertere strategische Waldbauplanungen und mittelfristige forstbetriebliche Entscheidungen bereitgestellt werden. Das Verwertungsziel liegt in der Abschätzung der Zukunftsfähigkeit von Baumarten und Baumartenmischungen unter sich verändernden Umweltbedingungen. Eignungsempfehlungen und die sie bestimmenden Risiko- und Leistungsprojektionen werden am bundesweiten Punkteraster der Bodenzustandserhebung (BZE), Waldzustandserhebung (WZE) und Bundeswaldinventur (BWI) sowie für einige länderübergreifende 'Nachbarschaftsregionen' flächig abgeleitet bzw. angewendet. Auf dieser Grundlage erfolgen anschließend Vergleiche der Eignungsempfehlungen in den 'Nachbarschaftsregionen' benachbarter Länder sowie zwischen den aktuellen (häufig nur regional gültigen) expertenbasierten Verfahren und den modellgestützt adaptierten Verfahren. Dieser Vergleich wird durch Sensitivitätsanalysen über große Standortgradienten ergänzt. Ausgehend von rezenten Klimabedingungen (1981-2010) werden als zeitliche Korridore die nahe (2021-2050) und ferne Zukunft (2071-2100) unter Berücksichtigung der zwei Klimaszenarien RCP 4.5 und 8.5 betrachtet.

Vorhersage und Kontrolle des Flammenrückschlags von Wasserstoffflammen, Teilvorhaben: Strömungssimulation und Sensitivitätsanalyse

1 2 3 4 572 73 74