Das Projekt "Thermolumineszenz, eine neue Methode zur Erfassung und Charakterisierung von Umweltstress bei Pflanzen" wird/wurde gefördert durch: Bund-Länder-Kommission für Bildungsplanung und Forschungsförderung. Es wird/wurde ausgeführt durch: Universität Leipzig, Institut für Biologie I, Abteilung Pflanzenphysiologie.In der Pflanzenanzucht oder in der Erfassung von umweltbedingten Pflanzenschäden sind neue Diagnoseinstrumente erforderlich, die möglichst selektiv die Wirkung wichtiger Streßfaktoren anzeigen, bevor es zu Wachstumseinbußen kommt. So besteht z.B. Interesse darin, ein Screening- Instrumentarium bereit zu haben, das genetische Varietäten erkennen kann, die gegenüber Ozon, UV-B oder Herbiziden besondere Empfindlichkeit bzw. Resistenz aufweisen. In dem Vorhaben wird untersucht, ob die Thermolumineszenz dafür einen geeigneten Ansatzpunkt liefern kann.
Das Projekt "Emmy Noether-Nachwuchsgruppen, Mechanisms regulating the boron nutritional status in rapeseed and Arabidopsis and their implications for the development of boron-efficient genotypes" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung.Boron (B) is an essential microelement for plants. Despite the use of modern fertilization methods, B deficiency still causes losses in agricultural plant production. Even though many positive effects of B on plant growth and physiology have been reported, a large majority of B functions and the regulatory mechanisms controlling the B nutritional status remain unknown. The main objective of this project is to elucidate how the greatly B deficiency-sensitive Brassica crop plants process and regulate their B status during vegetative and reproductive growth. In this context, the project aims at identifying the mode of action of B in mechanisms regulating the B status itself and uncovering those mechanisms contributing to B efficiency in different genotypes. Plant species subjected to investigation will be the agronomically important oilseed and vegetable plant Brassica napus (rapeseed) and its close relative the genetic and molecular model plant Arabidopsis thaliana. Questions addressed within the scope of this project should lead to a detailed understanding of mechanisms controlling B uptake and allocation from the level of the whole plant down to the cellular level. B transport routes and rates will be determined in sink- and source tissues and in developmental periods with a particularly high B demand. A special focus will be on the identification of B transport bottlenecks and the analysis of B deficiency-sensitive transport processes to and within the highly B-demanding reproductive organs. Recent studies in Arabidopsis suggest that Nodulin26-like Intrinsic Proteins (NIPs), which belong to the aquaporin channel protein family, are essential for plant B uptake and distribution. The systematic focus on the molecular and physiological characterization of B. napus NIPs will clarify their role in B transport and will identify novel NIP-associated mechanisms playing key roles in the B response network.To further resolve the mostly unknown impact of the B nutritional status on gene regulation and metabolism, a transcript and metabolite profile of B-sufficient and B-deficient rapeseed plants will be generated. Additionally, an Arabidopsis transcription factor knockout collection (greater 300 lines) will be screened for abnormalities in responses to the B nutritional status. This will identify yet unknown B-responsive genes (transcription factors and their targets) and gene products (enzymes or metabolite variations) playing key roles in signalling pathways and mechanisms regulating the B homeostasis. Boron (in form of boric acid) and arsenite (As) share in all likelihood the same NIP-mediated transport pathways. To assess the consequences of this dual transport pathway the so far unstudied impact of the plants B nutritional status on the accumulation and distribution of As will be investigated in B. napus. Moreover, the current dimension of the As contamination of Brassica-based food products, to which consumers are exposed to, will be analyzed. usw.
Das Projekt "Einsatz von heizwertreichen Siebresten aus der Mechanisch-Biologischen Restabfallbehandlung bei der Klinkerherstellung" wird/wurde ausgeführt durch: Universität Leoben, Institut für Entsorgungs- und Deponietechnik.Zementwerke verfuegen ueber Produktionsanlagen (u.a. Drehrohroefen), deren Hauptzweck die Erzeugung von qualitativ hochwertigem Zement darstellt. Dabei handelt es sich um einen sehr energieintensiven Prozess, weshalb neben dem Primaerenergietraegereinsatz auch der Einsatz von ausgewaehlten Alternativbrennstoffen zur thermischen Verwertung in Oesterreich dem Stand der Technik entspricht. So werden beispielsweise derzeit bereits getrennt gesammelte und aufbereitete Kunststoffe sowie Kunststoff-Produktionsabfaelle in den Zementwerken Wietersdorf, Wopfing, Leube, Retznei und Mannersdorf sowie Altoele und halogenfreie Loesungsmittel in den Zementwerken Peggau und Gmunden eingesetzt. Im vorliegenden Pilotprojekt soll deshalb untersucht werden, welchen Beitrag die Firma Baufeld-Austria zu einer oekologisch vertretbaren und oekonomisch sinnvollen Loesung der Restabfallproblematik leisten kann. Insbesondere soll die Frage geklaert werden, ob der Einsatz von heizwertreichen Siebresten (SNr.: 91102 und 91103) aus der mechanisch-biologischen Restabfallbehandlung (MBR) bei der Klinkerproduktion technisch moeglich, umweltvertraeglich und oekonomisch sinnvoll ist. Folgende Arbeitsschwerpunkte wurden definiert: Materielle und chemische Charakterisierung der Siebreste aus der MBR Untersuchungen zur mechanischen Aufbereitung der Siebreste zu einem qualitativ hochwertigen Alternativbrennstoff mit definierten Eigenschaften Feststellung der Eignung der bestehenden Feuerungsanlage (Drehrohrofen zur Klinkererzeugung) fuer die thermische Verwertung von Siebresten aus der MBR Moegliche betriebswirtschaftliche Konsequenzen eines thermischen Verwertungskonzeptes Vorrangiges Ziel des Projektes ist die Beurteilung der Substitution von Primaerenergietraegern durch die Nutzung der Energieinhalte von Siebresten mit den damit verbundenen oekonomischen und oekologischen Vorteilen.
Das Projekt "Nass-Siebung und Magnetseparation von Korngemischen zur Minimierung von Sekundärabfällen im Rückbau kerntechnischer Anlagen, Teilprojekt: Durchführung von Versuchen mit radioaktivem Probenmaterial" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Karlsruher Institut für Technologie (KIT), Sondervermögen Großforschung, Institut für Nukleare Entsorgung (INE).
Das Projekt "Nass-Siebung und Magnetseparation von Korngemischen zur Minimierung von Sekundärabfällen im Rückbau kerntechnischer Anlagen, Teilprojekt: Durchführung der Versuche mit inaktivem Probenmaterial" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Karlsruher Institut für Technologie (KIT), Institut für Technologie und Management im Baubetrieb.
Das Projekt "WIR! - Gipsrecycling als Chance für den Südharz: Entwicklung eines Recyclingverfahrens zur Minimierung und Verwertung von Rückständen aus der Gipsgewinnung und Aufbereitung, Teilprojekt 2: 'Charakterisierung und Aufbereitung'" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Technische Universität Clausthal, Institut für Aufbereitung, Deponietechnik und Geomechanik, Lehrstuhl für Rohstoffaufbereitung und Recycling.
Das Projekt "Zero-Waste-Produktion der Rieder Glasfasterbetontafel mit der Matrix 3.0 + Messprogramm" wird/wurde gefördert durch: Bundesministerium für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz. Es wird/wurde ausgeführt durch: Rieder Faserbeton-Elemente GmbH.Die Rieder Faserbeton-Elemente GmbH ist Hersteller von Fassadenplatten aus Textilbeton sowie weiteren Betonprodukten für Bahn- und Straßenbau, Lärmschutz und Stützwände. Beton wird aus Wasser, Gesteinskörnung und Zement als Bindemittel hergestellt. Die von der Firma Rieder produzierten 'fibreC'-Faserbetonplatten (mit Glasfaser verstärkter Beton) bestehen zu 27 Prozent aus CO2-intensivem Portlandzement. Bei der Produktion der Betonplatten fallen derzeit ca. 40 Prozent Verschnitt an. Ziel des Projekts ist die Errichtung einer neuartigen Anlage zur ressourceneffizienten und CO2-sparsamen Herstellung von Faserbetonplatten. Verarbeiten soll die Anlage eine neue, vom Unternehmen entwickelte Betonrezeptur 'Matrix 3.0', die Zement teilweise durch die nahezu CO2-freien Bindemittel Hüttensandmehl (Nebenprodukt der Roheisenherstellung) und Puzzolane (kieselsäure- und tonerdehaltige Stoffe) ersetzt. Der bei der Plattenherstellung unvermeidbare Verschnitt sowie Fehlproduktion sollen mittels Backenbrecher (Druckzerkleinerung) und Siebung soweit aufbereitet werden, dass eine Gesteinskörnung für die teilweise Rückführung in den Produktionsprozess erzeugt werden kann. Um eine Mehrfachnutzung des Prozesswassers zu ermöglichen, ist eine Wasseraufbereitungsanlage mit Feinstkornfiltration und pH-Neutralisierung vorgesehen. Darüber hinaus soll erstmalig ein in der Leder- und Textilbranche eingesetztes optisches Konfektionierungssystem für die Betonbranche adaptiert werden. Bei Standard- und Sonderschnitten soll damit durch eine optimale Ausnutzung der Platten der bisher anfallende Verschnitt halbiert werden können. Mit der neuen Betonrezeptur kann der jährliche Zementverbrauch um 1.380 Tonnen (54 Prozent) gesenkt werden. Zusammen mit der Halbierung des Verschnitts ergeben sich daraus CO2-Einsparungen in Höhe von 1.659 Tonnen (22 Prozent) pro Jahr. Weiterhin können durch das Recycling und die Wiedereinbringung von Verschnitt und Fehlproduktion in den Herstellungsprozess sowie durch den Einsatz des optischen Konfektionierungssystems pro Jahr 1.485 Tonnen an Bausand (22,4 Prozent) und damit auch an Abfall eingespart werden. Die Mehrfachnutzung des Prozesswassers reduziert den jährlichen Frischwasserbedarf um 5.040 Kubikmeter. Das entspricht 32 Prozent des Gesamtwasserbedarfs der Produktion.
Das Projekt "ERWAS: RIAS - Ressourcenschonende und integrierte Aktivkohleherstellung auf Kläranlagen zur Spurenstoffelimination, Teilprojekt 6" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Huber SE Maschinen- und Anlagenbau.
Das Projekt "ERWAS: RIAS - Ressourcenschonende und integrierte Aktivkohleherstellung auf Kläranlagen zur Spurenstoffelimination, Teilprojekt 5" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Ruhrverband.
Das Projekt "ERWAS: RIAS - Ressourcenschonende und integrierte Aktivkohleherstellung auf Kläranlagen zur Spurenstoffelimination, Teilprojekt 3" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Glatt Ingenieurtechnik GmbH.
Origin | Count |
---|---|
Bund | 153 |
Land | 1 |
Wissenschaft | 1 |
Type | Count |
---|---|
Förderprogramm | 152 |
unbekannt | 1 |
License | Count |
---|---|
geschlossen | 1 |
offen | 152 |
Language | Count |
---|---|
Deutsch | 111 |
Englisch | 52 |
Resource type | Count |
---|---|
Keine | 89 |
Webseite | 64 |
Topic | Count |
---|---|
Boden | 94 |
Lebewesen & Lebensräume | 128 |
Luft | 77 |
Mensch & Umwelt | 153 |
Wasser | 89 |
Weitere | 153 |