API src

Found 19 results.

Teilvorhaben 1

Das Projekt "Teilvorhaben 1" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum für Ozeanforschung Kiel (GEOMAR), Forschungsbereich 2: Marine Biogeochemie, Forschungseinheit Chemische Ozeanographie durchgeführt. 1. Vorhabenziel: Kurzlebige halogenierte Substanzen (VSLS) tragen wesentlich zum stratosphärischen Ozonabbau bei, insbesondere im Zusammenspiel mit Schwefelaerosolen. Zentrale Fragen im Projekt THREAT sind dabei: Welcher Anteil des beobachteten Halogen- und Schwefelgehalts in der Stratosphäre hat eine natürliche, ozeanische Quelle als Ursprung, wie ändert sich dieser in einem zukünftigen Klima und beeinflusst damit die Struktur und chemische Zusammensetzung der Mittleren Atmosphäre (MA) und gibt es mögliche Rückkopplungen? Die Vorhabenziele sind: I) Die Abschätzung der Rolle von natürlich emittierten VSLS- und Schwefelverbindungen für die MA in einem sich ändernden Klima (GEOMAR und KIT); II) die Entwicklung von ozeanischen VSLS- und Schwefel-Emissionsmodulen für gekoppelte Klimamodelle (GEOMAR); III) die Verbesserung des Verständnisses und der numerischen Modellierung von Prozessen, die den Eintrag von VSLS und Schwefel Verbindungen in die MA kontrollieren (GEOMAR und KIT). 2. Arbeitsplanung: Um diese Ziele zu bearbeiten, wird ein zweistufiges Verfahren verfolgt. Erstens werden die gegenwärtig beobachteten ozeanischen Flüsse von halogenierten VSLS und Schwefel Verbindungen parametrisiert, um besser die globalen Emissionen in der Zukunft abschätzen zu können (GEOMAR). Zweitens werden hochauflösende Lagrangesche Transport- (GEOMAR) sowie Chemieklimamodelle (KIT) verwendet um den Eintrag dieser flüchtigen Substanzen auf die MA abzuschätzen und mögliche Rückkopplungsmechanismen zu untersuchen (GEOMAR). (Gesamt THREAT 79PM: GEOMAR 67PM und KIT 12PM).

Teilvorhaben 2

Das Projekt "Teilvorhaben 2" wird vom Umweltbundesamt gefördert und von Karlsruher Institut für Technologie (KIT), Institut für Meteorologie und Klimaforschung - Atmosphärische Spurenstoffe und Fernerkundung (IMK-ASF) durchgeführt. 1. Vorhabenziel: Kurzlebige halogenierte Substanzen (VSLS) tragen wesentlich zum stratosphärischen Ozonabbau bei, insbesondere im Zusammenspiel mit Schwefelaerosolen. Zentrale Fragen im Projekt THREAT sind dabei: Welcher Anteil des beobachteten Halogen- und Schwefelgehalts in der Stratosphäre hat eine natürliche, ozeanische Quelle als Ursprung, wie ändert sich dieser in einem zukünftigen Klima und beeinflusst damit die Struktur und chemische Zusammensetzung der Mittleren Atmosphäre (MA), und gibt es mögliche Rückkopplungen? Die Vorhabenziele sind: I) Die Abschätzung der Rolle von natürlich emittierten VSLS- und Schwefelverbindungen für die MA in einem sich ändernden Klima (GEOMAR und KIT); II) die Entwicklung von ozeanischen VSLS- und Schwefel-Emissionsmodulen für gekoppelte Klimamodelle (GEOMAR); III) die Verbesserung des Verständnisses und der numerischen Modellierung von Prozessen, die den Eintrag von VSLS und Schwefel Verbindungen in die MA kontrollieren (GEOMAR und KIT). 2. Arbeitsplanung: Um diese Ziele zu bearbeiten, wird ein zweistufiges Verfahren verfolgt. Erstens werden die gegenwärtig beobachteten ozeanischen Flüsse von halogenierten VSLS und Schwefel Verbindungen parametrisiert, um besser die globalen Emissionen in der Zukunft abschätzen zu können (GEOMAR). Zweitens werden hochauflösende Lagrangesche Transport- (GEOMAR) sowie Chemieklimamodelle (KIT) verwendet, um den Eintrag dieser flüchtigen Substanzen auf die MA abzuschätzen und mögliche Rückkopplungsmechanismen zu untersuchen (GEOMAR). (Gesamt THREAT 79PM: GEOMAR 67PM und KIT 12PM).

Stratosphärischer Ozonverlust im Sommer in mittleren Breiten - ein potentielles Risiko von Climate-Engineering? (CE-O3)

Das Projekt "Stratosphärischer Ozonverlust im Sommer in mittleren Breiten - ein potentielles Risiko von Climate-Engineering? (CE-O3)" wird vom Umweltbundesamt gefördert und von Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung (IEK), Stratosphäre (IEK-7) durchgeführt. In jüngster Zeit wurde ein neuer Mechanismus zum Ozonabbau über besiedelten Gebieten in der wissenschaftlichen Gemeinschaft diskutiert, der vor einer zunehmenden Gefahr von niedrigem Ozon im Sommer in mittleren Breiten in der unteren Stratosphäre warnt. Der Ozonabbau soll durch erhöhte Mengen an Wasserdampf verursacht werden, die konvektiv in die Stratosphäre injiziert werden und zu durch Chlor bedingtem katalytischen Ozonverlust führen soll durch heterogene Reaktionen an binären Sulfat-Wasser-Aerosolen (H2SO4/H2O). Diese heterogenen Reaktionen werden durch erhöhte Mengen an Wasserdampf und niedrige Temperaturen beschleunigt. Vorausgesetzt, dass die Intensität und die Frequenz des konvektiv injizierten Wasserdampfes durch den anthropogenen Klimawandel in den nächsten Jahrzehnten ansteigen, ist mit einer Erhöhung der ultravioletten Strahlung (UV) auf der Erdoberfläche über besiedelten Gebieten zu rechnen. Die Details dieses neuen Ozonverlust-Mechanismus sind jedoch noch unklar, so dass eine genaue Quantifizierung des Ozonverlustes und seiner Sensitivität auf stratosphärischen Schwefel und Wasserdampf noch nicht möglich war. Ferner wurde im Rahmen von Climate-Engineering-Methoden, die Injektion von Sulfat-Aerosol in die Stratosphäre vorgeschlagen, um die globale Erderwärmung abzuschwächen. Dies könnte zusätzlich den Ozonabbau in der unteren Stratosphäre in mittleren Breiten verstärken. Motiviert durch diese Wissenslücken in unserem gegenwärtigen Verständnis von Ozonverlustprozessen in mittleren Breiten in der unter Stratosphäre, schlagen wir im Rahmen des DFG Schwerpunktprogramms 'Climate Engineering' ein Projekt vor, dass unter Bedingungen mit sowohl erhöhtem Wasserdampf als auch erhöhtem Sulfat-Aerosol den Ozonverlust analysiert. Unser Projekt basiert auf verschiedenen Simulationen mit dem drei-dimensionalen Chemie-Transport-Modell CLaMS mit dem Ziel die Details dieses neuen Ozonverlust-Mechanismus zu verstehen und zu quantifizieren. Ferner soll der mögliche Ozonverlustes unter Klima-Engineering-Bedingungen zuverlässig simulieren werden. Ein Algorithmus, der die Abhängigkeit des Ozonverlustes in mittleren Breiten von erhöhtem stratosphärischem Schwefel beschreibt, wird der Klima-Engineering-Community als Basis für weitere ökonomische Analysen zur Verfügung gestellt. Unsere Ergebnisse werden helfen zukünftige Entscheidungen über Klima-Engineering zu bewerten, um mögliche Risiken und Kosten für die Gesellschaft zu minimieren.

Teilvorhaben 1

Das Projekt "Teilvorhaben 1" wird vom Umweltbundesamt gefördert und von Johann Wolfgang Goethe-Universität Frankfurt am Main, Institut für Atmosphäre und Umwelt durchgeführt. Im Rahmen der Klimaänderungen spielen auch Änderungen in der Zirkulation der Stratosphäre (Brewer-Dobson Zirkulation; BDC) eine Rolle. Ziel dieses Vorhabens ist es durch Beobachtungen die möglichen Änderungen der BDC zu untersuchen und Modellen wichtige Parameter über atmosphärische Transportzeiten (das sogenannte Alter der Luft) und deren möglicher zeitlicher Veränderungen an die Hand zu geben. Dies soll durch die Fortführung eines in-situ Datensatzes von Ballonbeobachtungen (dieses Teilprojekt) und eines Satellitendatensatzes erreicht werden (Teilprojekt KIT). Der in-situ Datensatz kann seit 2005 aus Sicherheitsgründen (Genehmigung für Ballonflüge in Südfrankreich) nicht mehr aktualisiert werden. Ab dem Jahr 2014 bietet die französische Weltraumagentur CNES wieder Ballonflüge in mittleren Breiten (Kanada) an, so dass der Datensatz fortgeführt werden kann. Zusätzlich soll eine neue bei NOAA (USA) entwickelte Messmethode (Aircore) validiert werden die es dann erlaubt auch mit kleinen kostengünstigen Wetterballons regelmäßig Alterstracer in der Stratosphäre zu messen. Wir schlagen vor, einen Ballonflug durchzuführen und , die Daten zu verwenden um die Satellitenbeobachtungen (siehe Teilprojekt KIT) und die AIRCORE Methode zu validieren, die verschiedenen Datensätze zusammenzuführen, eine systematische Fehlerbetrachtung durchzuführen und anschließend unter Verwendung aller Daten eine Berechnung der Langzeittrends im mittleren Alter durchzuführen.

Integration of routine Aircraft measurements into a Global Observing System (IAGOS)

Das Projekt "Integration of routine Aircraft measurements into a Global Observing System (IAGOS)" wird vom Umweltbundesamt gefördert und von Forschungszentrum Jülich GmbH, Institut für Chemie und Dynamik der Geosphäre durchgeführt. IAGOS is a design study pursuing the preparation of a resilient distributed infrastructure for routine observations of atmospheric composition, aerosols, clouds and contrails on the global scale from commercial in-service aircraft. Observations in the Up per Troposphere and Lower Stratosphere (UTLS) are critical for improving the scientific understanding of chemistry-climate interactions, particularly those associated with the roles of clouds, aerosols and chemical composition. This information is essen tial for improving the scientific basis related to predictions of global climate change and for the assessment of surface air pollution, including the influence of aviation impacts and of emissions from other parts of the world on Europe. In IAGOS, new instrument packages will be developed which include state of the art developments based on the former MOZAIC instrumentation for O3, H2O, CO and NOy/NOx with significant reductions in size and weight. A central element is the certification of the packa ges for installation and deployment on Airbus longrange aircraft and for maintenance in compliance with aeronautical regulations. New instrumentation will be designed for aerosol, cloud particles and for stratospheric water vapour. Another important elem ent is the design of realtime data provision from the new instruments to meteorological services. Finally, IAGOS will establish the logistic and financial boundary conditions for the operation of the new infrastructure and will initiate the dialog betwe en scientific partners, users and airlines interested in supporting the new infrastructure. IAGOS is epected to make a significant step forward in the development of a globally operated in situ ob-servation network for the climate system.

Aerosolpartikel in der Outflow-Region des Asiatischen Monsuns: Zusammensetzung und Bildungsprozesse

Das Projekt "Aerosolpartikel in der Outflow-Region des Asiatischen Monsuns: Zusammensetzung und Bildungsprozesse" wird vom Umweltbundesamt gefördert und von Deutsche Forschungsgemeinschaft durchgeführt. Der asiatische Monsun spielt eine wichtige Rolle beim Verständnis der chemischen und klimarelevanten Prozesse in der globalen Atmosphäre, nicht zuletzt wegen seines Einflusses auf die Aerosol- und Wolkeneigenschaften in der oberen Troposphäre und unteren Stratosphäre. Bereits seit einigen Jahren wird die sogenannte Asian Tropopause Aerosol Layer (ATAL) mit Fernerkundungsmethoden und Ballon-basierten Messungen untersucht. Es existieren allerdings nur wenige in-situ Beobachtungen innerhalb der ATAL, beziehungsweise in der Ausströmregion (Outflow) des asiatischen Monsuns in Richtung mittlere Breiten, die Informationen über die chemischen Zusammensetzung der Aerosolpartikel geben. Es wird davon ausgegangen, dass die Luftmassen im Outflow des asiatischen Monsuns Aerosolpartikel enthalten, die aufgrund von photochemischer Prozessierung und sekundärer Bildung während des Transports veränderte Eigenschaften aufweisen. Diese Prozesse haben einen Einfluss auf die Fähigkeit der Partikel zur Eisnukleation und damit wiederum auf den indirekten Klimaeffekt dieser Partikel. Dieser Antrag zielt daher auf die in-situ Untersuchung der chemischen Zusammensetzung der Aerosolpartikel im submikrometer Bereich ab. Wir schlagen vor, das Hybrid-Aerosolmassenspektrometer ERICA (ERC instrument for the chemical composition of aerosols) im Rahmen der PHILEAS Kampagne auf dem Forschungsflugzeug HALO einzusetzen. Das ERICA kombiniert zwei Typen von Aerosolmassenspektrometrie-Methoden und ermöglicht es somit, zeitgleich Einzelpartikel- und Ensemblemessungen zur chemischen Zusammensetzung durchzuführen. Zusätzlich wird die Messkapazität zum einen durch den Einbau eines Impaktors erweitert, welcher eine spätere offline-Analyse der Partikel mittels Röntgenstrahlung und Elektronenmikroskopie ermöglicht. Zum anderen wird ein neuer Messmodus zur quantitativen chemischen Analyse von Einzelpartikeln in das ERICA integriert. Dieser Datensatz, zusammen mit Spurengasmessungen und der lagrangeschen Modellierung der Luftmassenherkunft, wird somit die Untersuchung von Quellen, Bildungsprozessen sowie der photochemische Entwicklung der Aerosolpartikel während des Transports ermöglichen.

Sekundäre Aerosolbildung und Partikelwachstum in der tropischen oberen Troposphäre: Messungen der chemischen Zusammensetzung der Aerosolpartikel mittels Aerosolmassenspektrometrie

Das Projekt "Sekundäre Aerosolbildung und Partikelwachstum in der tropischen oberen Troposphäre: Messungen der chemischen Zusammensetzung der Aerosolpartikel mittels Aerosolmassenspektrometrie" wird vom Umweltbundesamt gefördert und von Deutsche Forschungsgemeinschaft durchgeführt. Die obere Troposphäre, insbesondere in den Tropen, stellt eine bedeutende Quellregion für atmosphärische Aerosolpartikel dar. Die dort aus der Gasphase neu gebildeten Partikel können sowohl abwärts in die mittlere und untere Atmosphäre transportiert werden und dort als Wolkenkondensationskeime wirken, als auch aufwärts in die Stratosphäre gelangen, wo sie zur stratosphärischen Aerosolschicht (Junge-Schicht) beitragen. Die Vorläufergase dieser Partikelbildung, die durch Konvektion in die obere Troposphäre gelangen, können einerseits schwefelhaltige Gase sein (SO2, H2SO4), andererseits aber auch organische Substanzen, z.B. Isopren und dessen Abbauprodukte. Die genauen Mechanismen der Bildung und des Wachstums dieser Partikel, ebenso die chemischen Zusammensetzung und die Quellen der Vorläufergase, sind noch nicht geklärt. Dieses Projekt befasst sich daher mit der Messung der chemischen Zusammensetzung der Vorläufergase sowie der neu gebildeten und der angewachsenen Partikel in der tropischen oberen Troposphäre über Brasilien im Rahmen der HALO Mission "CAFE-Brazil". Schwerpunkt des Vorhabens ist dabei die massenspektrometrische Analyse der angewachsenen Partikel mit einem flugzeuggetragenen Aerosolmassenspektrometer. In einem Vorläuferprojekt (ACRIDICON-CHUVA 2014) konnten wir nachgeweisen, dass ein bestimmtes Isopren-Abbauprodukt (IEPOX) für ca. 20% der organischen Aerosolmasse in der oberen Troposphäre verantwortlich ist. Das Ziel des hier beantragten Vorhabens ist daher, die Vorläufergase und Produktionsmechanismen der verbleibenden 80% zu identifizieren. Die Beobachtung von organischem Nitrat in der oberen Troposphäre legt nahe, dass auch Nitrat bei der Partikelbildung eine Rolle spielt, aber dieser Prozess ist ebenfalls noch nicht geklärt.

Langzeitvariation der stratospherischen Aerosolextinktion und der Aerosolteilchengrößen bei mittleren und hohen nördlichen Breiten

Das Projekt "Langzeitvariation der stratospherischen Aerosolextinktion und der Aerosolteilchengrößen bei mittleren und hohen nördlichen Breiten" wird vom Umweltbundesamt gefördert und von Leibniz-Institut für Atmosphärenphysik e.V. an der Universität Rostock durchgeführt. Stratosphärisches Sulphataerosol ist von großer Bedeutung für das Klimasystem, weil es solare Strahlung streut und damit die planetare Albedo der Erde erhöht. Es ist außerdem wichtig für die Chemie der Stratosphäre, weil die Aerosolpartikel an der Chloraktivierung - sogar außerhalb der Polarwirbel - sowie bekanntermaßen an der Bildung polarer stratosphärischer Wolken beteiligt sind. Darüber hinaus ist stratosphärisches Aerosol laut dem 5. Sachstandsbericht des Intergovernmental Panel on Climate Change mitverantwortlich für die gegenwärtige Erwärmungspause. Boden-gestützte Lidar-Beobachtungen stellen eine der genauesten Methoden zur Fernerkundung stratosphärischer Aerosole dar. Im Rahmen des hier vorgeschlagenen Forschungsprojekts sollen Lidar-Messungen an 3 unterschiedlichen Orten - die bisher noch nicht zur Untersuchung stratosphärischer Aerosole verwendet wurden - genutzt werden. Die Lidar Systeme werden vom Leibniz-Institut für Atmosphärenphysik (IAP) e.V. an der Universität Rostock in Kühlungsborn betrieben und befinden sich im ALOMAR Observatorium in Andenes (Norwegen), auf der Davis Forschungsstation (Antarktis), sowie in Kühlungsborn. Zwei der Lidar-Messreihen decken gegenwärtig einen Zeitraum von 20 Jahren ab und die Lidar-Messungen in Alomar werden bei mehreren Wellenlängen durchgeführt, was die Ableitung von Teilchengrößen der stratosphärischen Aerosolpartikel erlaubt. Ein Alleinstellungsmerkmal der Lidar-systeme ist ihre Tageslichtfähigkeit, d.h., die Messungen können nicht nur nachts durchgeführt werden, was erstmals die Messung stratosphärischer Aerosole im polaren Sommer erlaubt. Die Lidar-Rohdaten werden in der ersten Phase des Projekts in vertikale Profile des Rückstreukoeffizienten und/oder der Aerosolextinktion konvertiert. Darüber hinaus werden aus den Mehrfarbenmessungen in ALOMAR Aerosolteilchengrößen bestimmt. In der zweiten Projektphase werden die abgeleiteten Aerosolzeitreihen verwendet, um deren zeitliche Variabilität sowie Langzeittrends über einen Zeitraum von mehr als 20 Jahren zu untersuchen und zu quantifizieren. Hierbei spielen saisonale Variationen, Einflüsse der QBO (Quasi-Biennial-Oscillation) und von Vulkanausbrüchen eine entscheidende Rolle. Die abgeleiteten Aerosolteilchengrößen liefern außerdem dringend benötigte Randbedingungen für die Ableitung der stratosphärischen Aerosolextinktion aus Satellitenmessungen des Horizont-gestreuten Sonnenlichts. Diese Messmethode wurde in der Vergangenheit zur Auswertung verschiedener Satellitendatensätze (z.B. OSIRIS/Odin, SCIAMACHY/Envisat, OMPS-LP/Suomi) verwendet und basiert auf a priori Wissen der Größenverteilung stratosphärischer Aerosole. Die zu erwartenden Ergebnisse liefern wichtige neue Kenntnisse über die Variabilität und Langzeittrends stratosphärischer Aerosolparameter (Extinktion, optische Dichte und Teilchengröße) sowie des Strahlungsantriebs des stratosphärischen Aerosols in mittleren und hohen nördlichen Breiten und über dekadische Zeitskalen.

Novel climatic chamber with an innovative, energy-saving nano-aerosol humidificaction system for the manufacture of high quaity bakery products (NANOBAK)

Das Projekt "Novel climatic chamber with an innovative, energy-saving nano-aerosol humidificaction system for the manufacture of high quaity bakery products (NANOBAK)" wird vom Umweltbundesamt gefördert und von Verein zur Förderung des Technologietransfers an der Hochschule Bremerhaven e.V., Technologie-Transfer-Zentrum Bremerhaven durchgeführt. The baking industry includes companies that make value added products including bread, buns, rolls, doughs, desserts, crusts, pastas, cookies, biscuits, crackers etc. that are either baked or frozen. The use of refrigeration technology has made a bakery's location independent of its customers, thereby broadening the geographic market potential and contributing to the growth of this sector. However, this development does have a cost. Bakeries are energy intensive, using large amounts of electricity and natural gas to operate the refrigeration system, compressed air system and ovens. These energy costs are rising and becoming a significant portion of the ingredient costs of baked goods. About 10Prozent of the total electrical and thermal energy consumption of all craft enterprises originates from the bakery sector. Accordingly there are many possibilities for energy reduction and therefore to permanently reduce the costs for the enterprises and thus to make a sustainable contribution to climate protection. Making changes in the energy use patterns of bakeries would be the fastest way to affect the energy profile of bread, because bakery is responsible for 70 and 80Prozent of the total energy consumption in conventional and organic bread production, respectively. Overall aim of the NanoBAK-Collaborative Project is the efficient energy management in the baking industry. Specific aim of this project is the development and demonstration of a novel marketable climatic chamber with an innovative, energy-saving nano-aerosol humidification system. Lab tests have shown that the energy consumption using ultrasonic humidification is significantly lower than for conventional humidification. The innovative ultrasonic humidification of the NanoBAK Project saves up to 50Prozent of energy compared to conventional humidifiers. Furthermore the quality of the bakery goods is of high value, so that the ultrasonic humidifier is profitable both energetically and qualitative.

Teilvorhaben 2: SO2-Messungen und atmosphärenwissenschaftliche Dateninterpretation

Das Projekt "Teilvorhaben 2: SO2-Messungen und atmosphärenwissenschaftliche Dateninterpretation" wird vom Umweltbundesamt gefördert und von Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Institut für Physik der Atmosphäre Oberpfaffenhofen durchgeführt. Die stratosphärische Aerosol-Schicht (Junge-Schicht) stellt einen der wichtigsten Einflussfaktoren für das Erdklima dar. Seine Präsenz beeinflusst die Strahlungsbilanz der Atmosphäre, zum einen durch die direkte Wechselwirkung zwischen dem Aerosol und solarer wie terrestrischer Strahlung. Zum anderen nimmt das stratosphärische Aerosol als Reaktionsoberfläche indirekt Einfluss auf das Klima durch seine Beteiligung bei heterogenen chemischen Umwandlungsprozessen in der Stratosphäre, wie zum Beispiel bei der Ozonchemie. Trotz seiner Auswirkungen auf das Erdklima sind die Prozesse, die zur Aufrechterhaltung des stratosphärischen Aerosols sowie zu dessen Umwandlung im Verlaufe der atmosphärischen Lebenszeit beitragen, nicht vollständig verstanden. Weitestgehend unklar sind zudem die Strahlungseigenschaften des stratosphärischen Aerosols in Abhängigkeit von dessen Alterungsfortschritt sowie die sich damit ändernden Wechselwirkungen mit dem Erdklima-System. SPITFIRE hat sich zum Ziel gesetzt, jene Prozesse genau zu untersuchen, die das stratosphärische Aerosol auch abseits von explosivem, hochreichendem Vulkanismus (z.B. Pinatubo 1991) aufrechterhalten. SPITFIRE will ferner die genaueren Auswirkungen des stratosphärischen Aerosols auf das Erdklima untersuchen, um eine bessere Vorhersagbarkeit zukünftiger Entwicklungen des stratosphärischen Aerosols und dessen Klimawechselwirkungen zu erreichen. Konkrete Zielsetzungen umfassen (1) das quantitative Verständnis der verschiedenen Quell- und Transportmechanismen des stratosphärischen Aerosols, (2) die Prozesse zu quantifizieren, die den Beitrag von Schwefelverbindungen und anderen organischen/inorganischen Substanzen zum stratosphärischen Aerosol steuern, (3) die Anteile von volatilen (flüchtigen) und refraktären (nichtflüchtigen) Partikeln am stratosphärischen Aerosol zu quantifizieren und (4) Parametrisierungen bezüglich der relevanten Prozesse zu erstellen, die sich in Chemie-Klima-Modelle implementieren lassen. SPITFIRE ist ein Verbundprojekt von fünf Forschungsgruppen mit langjähriger Erfahrung auf dem Gebiet der physiko-chemischen Aerosol-Charakterisierung sowie der Untersuchung von Aerosol-Vorläufergasen, wie SO2, H2SO4 und OCS in der UT/LS. SPITFIRE hat einen Schwerpunkt hinsichtlich experimenteller Beobachtungen aerosolbezogener Prozesse in der Stratosphäre unter Zuhilfenahme der Höhenforschungsflugzeuge M55-Geophysica und HALO.

1 2