API src

Found 682 results.

Related terms

Bebauungsplan Billstedt 103 1. Änderung Hamburg

§ 2 Nummer 3 der Verordnung über den Bebauungsplan Billstedt 103 vom 18. September 2007 (HmbGVBl. S. 299) erhält folgende Fassung: 3. Für die Beheizung und die Wasserversorgung gilt: 3.1 Neu zu errichtende Gebäude sind für Beheizung und Warmwasserversorgung an ein Wärmenetz anzuschließen und über dieses zu versorgen. Die Wärme muss überwiegend aus erneuerbaren Energien, Abwärme oder Kraft-Wärme-Kopplung erzeugt werden. 3.2 Vom Anschluss- und Benutzungszwang nach Nummer 3.1 wird ausnahmsweise abgesehen, wenn der berechnete Jahres-Heizwärmebedarf der Gebäude nach der Energieeinsparverordnung vom 24. Juli 2007 (BGBl. I S. 1519), geändert am 29. April 2009 (BGBl. I S. 954), den Wert von 15 kWh (m2a) Nutzfläche nicht übersteigt. 3.3 Vom Anschluss- und Benutzungsgebot nach Nummer 3.1 kann auf Antrag befreit werden, soweit die Erfüllung der Anforderungen im Einzelfall wegen besonderer Umstände zu einer unbilligen Härte führen würde. Die Befreiung kann zeitlich befristet werden."

Geothermisches Potenzial (Umweltatlas)

Geothermische Potenziale von Berlin bis 40 m, 60 m , 80 m und 100 m Tiefe in Abhängigkeit der geologischen Schichtfolge am Standort. Es wird jeweils die spezifische Entzugsleistung in W/m für 1800 Jahresbetriebsstunden für Wärmepumpen (gilt für den Heizbetrieb ohne Warmwasseraufbereitung) und für 2400 Jahresbetriebsstunden für Wärmepumpen (gilt für den Heizbetrieb mit Warmwasseraufbereitung) sowie die spezifische Wärmeleitfähigkeit in W/mK dargestellt.

Nachweis der technischen und wirtschaftlichen Anwendung von Niedertemperaturwärme aus Geothermie (60°C) für die Beheizung und Warmwasserbereitung in einem aktuell mit Hochtemperatur versorgten Wohnquartier

Die NEUWOBA Neubrandenburger Wohnungsbaugenossenschaft eG bewirtschaftet, baut und betreibt Bauten in allen Rechts- und Nutzungsformen. Der Zweck der Genossenschaft ist vorrangig die Förderung seiner Mitglieder, indem eine gute, sichere und sozial verantwortbare Wohnungsversorgung gewährleistet wird. Mit dem Vorhaben soll der Nachweis der technischen und wirtschaftlichen Anwendung von Niedertemperaturwärme in einem aktuell mit Hochtemperatur versorgten Wohnquartier erbracht werden, ohne dass die bestehende Hausinstallation umgerüstet werden muss. Bisher erfolgt die Beheizung der Gebäude durch erdgasbasierte Fernwärme des örtlichen Versorgers. Das Wohnquartier umfasst 52 Gebäude mit über 1.600 Wohnungen. Bei den Gebäuden handelt es sich um modular sanierte Häuser. Für eine weitergehende CO 2 -neutrale Beheizung und Warmwasserbereitung des Quartiers will die Neuwoba die heimische erneuerbare Energiequelle der Tiefengeothermie (60° C) nutzen. Das Thermalwasser soll aus einer ca. 1.300 m tiefen Gesteinsschicht gewonnen werden. Ergänzend wird ein mit Biogas betriebenes BHKW errichtet, das für die Erzeugung von Spitzenlastwärme und zur Eigenstrom- versorgung dient. Die Wärme soll über ein zu errichtendes Vier-Leiter-Netz an die Gebäude verteilt werden. Zwei Leiter dienen der direkten Bereitstellung der Geothermie-Wärme mit ca. 55° C Vorlauftemperatur, zwei weitere Leiter dienen der zusätzlichen Nachheizung für die Trinkwassererwärmung mit ca. 80° C Vorlauftemperatur. An energetisch unterdurchschnittlichen (Dämmstandard, Ausrichtung des Gebäudes) Wohngebäuden des Typs WBS 70 wurde im Rahmen eines Messprogramms eine Heizkennlinie für Wohngebäude am Standort ermittelt, die zeigt, dass eine Beheizung der Wohneinheiten mit 50° C Vorlauftemperatur bis 0° C Außentemperatur und mit 60° C Vorlauftemperatur bis - 4° C Außentemperatur ohne Umrüstung der Heizungsanlage in den Wohnräumen möglich ist. Im Vergleich zur aktuellen Nutzung von Hochtemperatur (bis 130° C) können durch Vorlauftemperaturen von 55° C bzw. 80°C Energieverluste gemindert werden und die bisher auf fossiler Basis erfolgte Wärmeversorgung auf erneuerbare Energien umgestellt werden. Insgesamt können mit dem Vorhaben rund 1.260 Tonnen Treibhausgas-Emissionen pro Jahr (78 Prozent) vermieden werden. Eine Übertragbarkeit der Technologie auf den Gebäudebestand anderer Wohnquartiere, insbesondere bei Plattenbauweise, ist möglich. Das Vorhaben leistet einen Beitrag zum Erreichen der Klimaschutzziele und der Ausbauziele erneuerbarer Energien in der Wärmeversorgung. Branche: Grundstücks- und Wohnungswesen und Sonstige Dienstleistungen Umweltbereich: Klimaschutz Fördernehmer: NEUWOBA Neubrandenburger Wohnungsbaugenossenschaft eG Bundesland: Mecklenburg-Vorpommern Laufzeit: seit 2017 Status: Laufend

Dold Holzwerke GmbH, Buchenbach: Erteilung einer immissionsschutzrechtlichen Änderungsgenehmigung für den geänderten Bau und Betrieb eines Biomasse-Heizwerkes - Unterbleiben einer Umweltverträglichkeitsprüfung

Die Firma Dold Holzwerke GmbH, Talstraße 9, 79256 Buchenbach, Flurstück Nr. 29/32, Gemarkung Wagensteig, beantragt für diesen Standort die Erteilung einer immissionsschutzrechtlichen Änderungsgenehmigung für den geänderten Bau und Betrieb eines Biomasse-Heizwerkes. Das Biomasse-Heizwerk besteht aus einer Feuerungsanlagen mit 6,9 MW Feuerungswärmeleistung zur Warmwassererzeugung mit Brennstofflagerung. Das erzeugte Warmwasser wird in das bestehende Wärmenetz der Dold Holzwerke GmbH eingespeist. Das Änderungsvorhaben umfasst den Verzicht auf die ursprünglich vorgesehene und genehmigte zweite Feuerungsanlage sowie die Rauchgaskondensation, welche nicht realisiert werden. Außerdem wird auf den Einsatz von Altholz AI und von Altholz AII unter Berücksichtigung eines Qualitätssicherungskonzepts als sogenannter fester Biobrennstoff verzichtet. Als Hauptbrennstoff ist ausschließlich naturbelassenes Holz und Rinde, die vom angrenzenden Rundholzplatz stammt, vorgesehen. Zugleich werden die aus der eigenen Produktion anfallenden Nebenprodukte Hackschnitzel, Sägespäne, Hobelspäne und Kappholz eingesetzt. Der Zukauf von weiterem Brennstoff in Form von naturbelassenem Holz ergänzt den eigenen Rohstoff. Das Vorhaben unterfällt der Ziffer 1.2.1 Spalte 2 der Anlage 1 zum Gesetz über die Umweltverträglichkeitsprüfung (UVPG).

Geothermisches Potenzial - spezifische Wärmeleitfähigkeit und spezifische Entzugsleistung 2017

Erklärung zur Barrierefreiheit Kontakt zur Ansprechperson Landesbeauftragte für digitale Barrierefreiheit Darstellung der spezifischen Wärmeleitfähigkeit bis zu einer Tiefe von 40 m. Anhand der Karte ist eine Abschätzung über die Eignung eines Standortes für die Nutzung von geothermischer Energie möglich. 02.18.1 Spezifische Wärmeleitfähigkeit bis 40 m Weitere Informationen Darstellung der spezifischen Wärmeleitfähigkeit bis zu einer Tiefe von 60 m. Anhand der Karte ist eine Abschätzung über die Eignung eines Standortes für die Nutzung von geothermischer Energie möglich. 02.18.2 Spezifische Wärmeleitfähigkeit bis 60 m Weitere Informationen Darstellung der spezifischen Wärmeleitfähigkeit bis zu einer Tiefe von 80 m. Anhand der Karte ist eine Abschätzung über die Eignung eines Standortes für die Nutzung von geothermischer Energie möglich. 02.18.3 Spezifische Wärmeleitfähigkeit bis 80 m Weitere Informationen Darstellung der spezifischen Wärmeleitfähigkeit bis zu einer Tiefe von 100 m. Anhand der Karte ist eine Abschätzung über die Eignung eines Standortes für die Nutzung von geothermischer Energie möglich. 02.18.4 Spezifische Wärmeleitfähigkeit bis 100 m Weitere Informationen Darstellung der spezifischen Entzugsleistung bis zu einer Tiefe von 40 m für ein durchschnittliches Einfamilienhaus mit reinem Heizbetrieb (1.800 Jahresbetriebsstunden). Anhand der Karte ist eine Abschätzung über die Eignung eines Standortes für die Nutzung von geothermischer Energie möglich. 02.18.5 Spezifische Entzugsleistung bis 40 m, für 1.800 h/a Weitere Informationen Darstellung der spezifischen Entzugsleistung bis zu einer Tiefe von 60 m für ein durchschnittliches Einfamilienhaus mit reinem Heizbetrieb (1.800 Jahresbetriebsstunden). Anhand der Karte ist eine Abschätzung über die Eignung eines Standortes für die Nutzung von geothermischer Energie möglich. 02.18.6 Spezifische Entzugsleistung bis 60 m, für 1.800 h/a Weitere Informationen Darstellung der spezifischen Entzugsleistung bis zu einer Tiefe von 80 m für ein durchschnittliches Einfamilienhaus mit reinem Heizbetrieb (1.800 Jahresbetriebsstunden). Anhand der Karte ist eine Abschätzung über die Eignung eines Standortes für die Nutzung von geothermischer Energie möglich. 02.18.7 Spezifische Entzugsleistung bis 80 m, für 1.800 h/a Weitere Informationen Darstellung der spezifischen Entzugsleistung bis zu einer Tiefe von 100 m für ein durchschnittliches Einfamilienhaus mit reinem Heizbetrieb (1.800 Jahresbetriebsstunden). Anhand der Karte ist eine Abschätzung über die Eignung eines Standortes für die Nutzung von geothermischer Energie möglich. 02.18.8 Spezifische Entzugsleistung bis 100 m, für 1.800 h/a Weitere Informationen Darstellung der spezifischen Entzugsleistung bis zu einer Tiefe von 40 m für ein durchschnittliches Einfamilienhaus mit Heizbetrieb und Warmwasseraufbereitung (2.400 Jahresbetriebsstunden). Anhand der Karte ist eine Abschätzung über die Eignung eines Standortes für die Nutzung von geothermischer Energie möglich. 02.18.9 Spezifische Entzugsleistung bis 40 m, für 2.400 h/a Weitere Informationen Darstellung der spezifischen Entzugsleistung bis zu einer Tiefe von 60 m für ein durchschnittliches Einfamilienhaus mit Heizbetrieb und Warmwasseraufbereitung (2.400 Jahresbetriebsstunden). Anhand der Karte ist eine Abschätzung über die Eignung eines Standortes für die Nutzung von geothermischer Energie möglich. 02.18.10 Spezifische Entzugsleistung bis 60 m, für 2.400 h/a Weitere Informationen Darstellung der spezifischen Entzugsleistung bis zu einer Tiefe von 80 m für ein durchschnittliches Einfamilienhaus mit Heizbetrieb und Warmwasseraufbereitung (2.400 Jahresbetriebsstunden). Anhand der Karte ist eine Abschätzung über die Eignung eines Standortes für die Nutzung von geothermischer Energie möglich. 02.18.11 Spezifische Entzugsleistung bis 80 m, für 2.400 h/a Weitere Informationen Darstellung der spezifischen Entzugsleistung bis zu einer Tiefe von 100 m für ein durchschnittliches Einfamilienhaus mit Heizbetrieb und Warmwasseraufbereitung (2.400 Jahresbetriebsstunden). Anhand der Karte ist eine Abschätzung über die Eignung eines Standortes für die Nutzung von geothermischer Energie möglich. 02.18.12 Spezifische Entzugsleistung bis 100 m, für 2.400 h/a Weitere Informationen

Kraft-Wärme-Kopplung (KWK)

Kraft-Wärme-Kopplung (KWK) Kraft-Wärme-Kopplung ist die gleichzeitige Umwandlung von Energie in mechanische oder elektrische Energie und nutzbare Wärme innerhalb eines thermodynamischen Prozesses. Die parallel zur Stromerzeugung produzierte Wärme wird zur Beheizung und Warmwasserbereitung oder für Produktionsprozesse genutzt. Der Einsatz der KWK mindert den Energieeinsatz und daraus resultierende Kohlendioxid-Emissionen. KWK-Anlagen KWK-Anlagen unterscheiden sich in ihren Techniken, den eingesetzten Brennstoffen, hinsichtlich ihrer Leistung und bezüglich ihrer Versorgungsaufgaben. In den vergangenen Jahren wurde im Interesse der Energieeinsparung sowie des Umwelt- und Klimaschutzes durch verschiedene energiepoltische Instrumente (insbesondere KWKG und EEG) der Ausbau der KWK angereizt und unterstützt. Der wesentliche ⁠ Indikator ⁠ des KWK-Ausbaus ist die KWK-Nettostromerzeugung, dessen Entwicklung durch eine energiepolitische Zielstellung flankiert ist. Neben der KWK-Stromerzeugung ist auch die damit korrespondierende KWK-Nettowärmeerzeugung eine im Fokus stehende Größe. Auf die Veränderung dieser beiden wesentlichen KWK-Kenngrößen konzentrieren sich die nachfolgenden Darstellungen. KWK-Stromerzeugung Die KWK-Nettostromerzeugung – gezeigt werden hier die Daten unter Berücksichtigung des Eigenwärmebedarfs des Biogasanlagenfermenters – ist im Zeitraum von 2003 bis 2017 kontinuierlich gestiegen (siehe Abb. „KWK: Nettostromerzeugung nach Energieträgern“). Der Zuwachs ist insbesondere auf den verstärkten Einsatz von ⁠ Biomasse ⁠ sowie auf den Zubau und einer besseren Auslastung erdgasbasierter KWK-Anlagen zurückzuführen. Die auf Steinkohle- und Mineralölen basierende KWK-Stromerzeugung ist im Zeitverlauf dagegen zurückgegangen. Die Minderung im Jahr 2018 gegenüber 2017 ist im Wesentlichen die Folge einer verbesserten energiestatistischen Erfassung der KWK(-Anlagen) ab 2018. Der moderate Rückgang seit 2018 bis 2020 spiegelt die reduzierte Nachfrage nach Strom in diesem Zeitraum wider. Dieser basiert hauptsächlich auf der Stilllegung von KWK-Anlagen, welche mit Stein- oder Braunkohle betrieben wurden. Im gleichen Zeitraum ist die gesamte Nettostromerzeugung um rund 10 Prozent zurückgegangen. 2021 ist die KWK-Stromerzeugung um rund 3 Prozent gegenüber 2020 gestiegen. KWK-Wärmeerzeugung Die Abbildung „KWK: Nettowärmeerzeugung nach Energieträgern“) zeigt von 2003 bis 2021 mit einem fast kontinuierlichen Anstieg ein ähnliches Bild wie im Strombereich (unter Berücksichtigung des Eigenwärmebedarfs der Biogasanlagen). Die im Vergleich zur KWK-Nettostromerzeugung prozentual geringere Erhöhung der KWK-Nettowärmeerzeugung im Zeitverlauf bis zum Jahr 2017 ist die Folge der Errichtung zahlreicher Gas-und-Dampf (GuD)-Anlagen, die eine überdurchschnittlich hohe ⁠ Stromkennzahl ⁠ aufweisen. Zwischen den Jahren 2017 und 2018 wurde die Erfassungsmethodik auf eine bessere Datengrundlage gestellt. Der Rückgang seit 2018 korrespondiert mit der jeweiligen Verringerung der KWK-Stromerzeugung (siehe Abschnitt „KWK-Stromerzeugung). 2021 stieg die KWK-Wärmeerzeugung um rund 4 Prozent. Infolge der Einsparanstrengungen von Erdgas infolge des russischen Angriffskriegs auf die Ukraine ist die KWK-Wärmeerzeugung 2022 um sieben Prozent und 2023 um fünf Prozent gegenüber dem jeweiligen Vorjahr gefallen. Ziel der Bundesregierung für die KWK-Stromerzeugung Bis zur Novellierung des Kraft-Wärme-Kopplungsgesetzes (KWKG) bezog sich das Ausbauziel der Politik auf die Gesamtnettostromerzeugung: Der KWK-Anteil an der gesamten Nettostromerzeugung sollte bis 2020 25 % betragen. Dieses wurde mit der Novellierung zum 1.1.2016 durch ein absolutes Mengenziel ersetzt. Die KWK-Nettostromerzeugung sollte demnach im Jahr 2020 mindestens 110 Terawattstunden und im Jahr 2025 mindestens 120 Terawattstunden betragen (§ 1 KWKG 2016) (siehe Abb. "KWK: Nettostromerzeugung nach Energieträgern" im ersten Abschnitt). Das Ziel für 2020 wurde nach vorläufigen Daten mit einer KWK-Nettostromerzeugung von 113 Terawattstunden erreicht.

Warmwasser

Bewusster Umgang mit Warmwasser schont Umwelt und Geldbeutel Wie Sie Ihre Kosten für Warmwasser senken können Installieren Sie wassersparende Armaturen. Lassen Sie warmes Wasser nur bei Bedarf laufen. Nutzen Sie die Zeit-Steuerungsoptionen des Heizsystems, um die Pumpe für die Zirkulationsleitung einige Stunden abzuschalten. Erwärmen Sie Ihr Warmwasser mit Sonnenkollektoren. Beachten Sie die hygienischen Anforderungen (mind. 60 °C, keine Stagnation), um Legionellen zu vermeiden. Gewusst wie Warmwasser ist nicht nur teuer, sondern auch – nach Heizung und Auto – einer der größten Energieverbraucher und CO 2 -Verursacher im privaten Haushalt. Mit den richtigen Maßnahmen lassen sich die Kosten für Warmwasser senken, die Umwelt schonen und gesundheitliche Anforderungen realisieren. Sparduschkopf einbauen: Durch wassersparende Armaturen lassen sich – meist ohne Komfortverlust – die Warmwasserkosten deutlich senken. Perlatoren, Wassersparbrausen und Ähnliches können auch nachträglich angebracht werden. Herkömmliche Duschbrausen haben einen Durchfluss von zwölf bis 15 Litern Wasser pro Minute. Wassersparbrausen hingegen nur sechs bis neun Liter. Das Öko-Institut hat errechnet, dass eine Wassersparbrause in einem Zwei-Personen-Haushalt durchschnittlich 20.000 Liter Wasser pro Jahr einsparen kann. Dies reduziert die Wasserkosten um über 80 Euro und spart darüber hinaus Energiekosten zwischen 35 Euro (Gas) und 144 Euro (Strom) ein (Öko-Institut 2012). Leerlaufverluste von Untertisch-Heißwasserspeichergeräten lassen sich mit Hilfe eines Vorschaltgeräts (z.B. Thermo-Stop) oder einer Zeitschaltuhr vermeiden bzw. verringern. Bei Geräten mit einem Fassungsvermögen von fünf bis 15 Litern lassen sich durch ein Vorschaltgerät rund 135 Kilowattstunden pro Jahr einsparen (Amortisation nach einem Jahr) (⁠ UBA ⁠ 2008). Beim Einsatz von wassersparenden Armaturen muss allerdings beachtet werden, dass es in der Trinkwasser-Installation nicht zu Stagnation kommt. Stagnierendes Wasser kann zu Hygieneproblemen führen (siehe unten). Warmwasser nur bei Bedarf: Duschen benötigt im Allgemeinen weniger Wasser als ein Bad in der Wanne. Wer allerdings beim Duschen das Wasser länger als zehn Minuten laufen lässt, kann den Wasserverbrauch eines Bades sogar toppen (bei 15 Litern Durchfluss pro Minute). Der Warmwasserverbrauch hängt deshalb auch stark von den persönlichen Nutzungsgewohnheiten ab. So hat auch Wellness einen Preis: Große Badewannen, Massagedüsen und Ähnliches kosten nicht nur in der Anschaffung, sondern verursachen auch höhere Warmwasserkosten in der Nutzung. Hygienische Anforderungen beachten: Das warme Wasser sollte überall im Leitungssystem immer eine Temperatur von mindestens 55 °C haben und am Austritt des Trinkwassererwärmers stets eine Temperatur von mindestens 60 °C einhalten, damit es zu keinem Legionellenwachstum kommt. Achten Sie darauf, dass auch wenig genutzte Leitungsabschnitte regelmäßig durchspült werden. Trinken sie nur frisches und kühles Wasser aus dem Zapfhahn. Beachten Sie, dass Legionellen auch in Kaltwasserleitungen wachsen können, wenn das Wasser dort lange genug steht und sich erwärmt. Warm- und Kaltwasserleitungen sollten daher gut wärmeisoliert sein und regelmäßig genutzt werden. Was Sie noch tun können: Vergleichen Sie Ihren Warmwassverbrauch mit dem WasserCheck und dem deutschen Warmwasserspiegel . Das regelmäßige Entkalken von Armaturen und Duschbrausen erhöht deren Lebensdauer. Vor dem Genuss das Trinkwasser ablaufen lassen, bis es kühl und frisch aus dem Hahn läuft. Ein Sparduschkopf entspricht 29 Energiesparlampen. Quelle: Kompetenzzentrum Nachhaltiger Konsum (KNK) Glühbirne austauschen ist gut - einen Sparduschkopf einbauen noch viel besser. Quelle: Kompetenzzentrum Nachhaltiger Konsum (KNK) Warmwassersparen ist ein #BigPoint in Sachen Klimaschutz und spart richtig viel CO2 ein. Quelle: Kompetenzzentrum Nachhaltiger Konsum (KNK) Ein Sparduschkopf entspricht 29 Energiesparlampen. Glühbirne austauschen ist gut - einen Sparduschkopf einbauen noch viel besser. Warmwassersparen ist ein #BigPoint in Sachen Klimaschutz und spart richtig viel CO2 ein. Hintergrund Für die Bereitstellung von Warmwasser werden durchschnittlich rund zwölf Prozent des gesamten Energieverbrauchs der privaten Haushalte in Deutschland benötigt. Wird das Warmwasser elektrisch erhitzt, entfallen darauf rund 25 Prozent des gesamten Stromverbrauchs in einem durchschnittlichen Zwei-Personen-Haushalt (Ecotopten 2013). Quellen: Öko-Institut (2012): PROSA-Studie Energie- und wassersparende Hand- und Kopfbrausen. ⁠ UBA ⁠ – Umweltbundesamt (2013): Energiesparen im Haushalt . UBA – Umweltbundesamt (2011): Energiesparen bei der Warmwasserbereitung – Vereinbarkeit von Energieeinsparung und Hygieneanforderungen an Trinkwasser .

Sonnenkollektoren, Solarthermie

Sonnenkollektoren: Klimafreundlich dank regenerativer Energiequelle So erzeugen Sie Wärme aus Sonnenenergie für Ihr Zuhause Installieren Sie Sonnenkollektoren, wenn Sie Platz auf Ihrem Dach haben. Nutzen Sie Förderprogramme und beachten Sie gesetzliche Vorgaben. Gewusst wie Sonnenkollektoren (Solarthermie) erwärmen Brauchwasser und können zusätzlich zur Heizungsunterstützung genutzt werden. Das spart wertvolle Ressourcen (Öl und Gas) und vermeidet umwelt- und klimaschädliche Emissionen. Sonnenkollektoren installieren: In Frage kommen Dachausrichtungen von Ost über Süd bis West. Bei Ost- oder Westausrichtung wird mehr Kollektorfläche benötigt. Eine Anlage zur Warmwassererzeugung braucht pro Person 1 bis 1,5 m 2 Kollektorfläche und für vier Personen ca. 300 Liter Speicher. Sie liefert übers Jahr ca. 60 % des benötigten Warmwassers. 6 m 2 Fläche erzeugen ca. 2.000 kWh th /Jahr. Dies spart ungefähr 495 kg Treibhausgase ein (⁠UBA⁠ 2019). Die Investitionskosten für eine Solarthermieanlage, die mittels Flachkollektoren die Brauchwassererwärmung unterstützt, liegen die Anlagenkosten zwischen ca. 4.000-6.000 EUR. Vakuumröhrenkollektoren liefern eine bessere Energieausbeute, dabei sind jedoch die Kollektoren teurer. Die Rentabilität der Anlage hängt von Gebäudezustand, derzeitigem Heizsystem und Brennstoffpreisen ab. Eine genaue individuelle Planung und eine Auswertung der Energieverbräuche ist unerlässlich. Sie umfasst die Themen: Art der Nutzung (nur Wassererwärmung oder zusätzlich Heizungsunterstützung) Frage des Kollektortyps Größe des Wärmespeichers Welches Anlagenkonzept (geeignete Verschaltung von Sonnenkollektoren, Wärmespeicher und Heizungsanlage) Kosten, Finanzierungs- und Fördermöglichkeiten Heizkosteneinsparung und Wirtschaftlichkeit Wahl eines erfahrenen Handwerkbetriebs. Eine herstellerunabhängige Energieberatung bieten z.B. viele Verbraucherzentralen an. Hilfreiche Online-Beratungstools und einen Renditerechner finden Sie bei den Links. Förderprogramme und gesetzliche Verpflichtungen: In bestehenden Gebäuden sind kombinierte Solaranlagen zur Brauchwassererwärmung und Heizungsunterstützung im Rahmen der Bundesförderung für effiziente Gebäude förderfähig. Sonnenkollektoren sind eine Möglichkeit, die Verpflichtungen nach dem Gebäudeenergiegesetz zu erfüllen. Bei manchen Anlagengrößen und Gebäudearten gibt es Anzeige- oder Genehmigungspflichten. Daher sollte beim örtlichen Bauamt nachgefragt werden. Was Sie noch tun können: Beachten Sie auch unsere ⁠ UBA ⁠-Umwelttipps zum Heizen . unten Photovoltaikmodule zur Stromerzeugung, oben Solarkollektoren zur Wärmeerzeugung Hintergrund Umweltsituation: Der Anteil der Solarthermie an der Wärmebereitstellung aus erneuerbaren Energien in Deutschland betrug im Jahr 2022 ca. 5 %. Das entspricht einer solarthermisch erzeugten Wärmemenge von ca. 9.733 GWh. Damit wurden ca. 2,6 Millionen Tonnen Treibhausgase (CO 2 -Äquivalente) vermieden, wobei die Herstellung der Anlagen und Betriebsstoffe bereits berücksichtigt sind. Ebenso werden ca. 1.175 Tonnen versauernde Stoffe (SO 2 -Äquivalente) eingespart (⁠UBA⁠ 2023 & 2018). Die Wärmeerzeugung durch Sonnenkollektoren hat aus Umweltsicht viele Vorteile gegenüber Biomasseverfeuerung: keine Flächenkonkurrenz zum Nahrungsmittelanbau und keine Abgase im Betrieb. Allerdings kann Solarwärme nur einen Teil des Energiebedarfs für Warmwasser und Raumwärme decken. Gesetzeslage: Das Gebäudeenergiegesetz schreibt den Einsatz von 65 % erneuerbarer Energien ab 2024 im Neubau vor, ab Mitte 2026 sukzessive auch für Bestandsgebäude. Dafür eignet sich auch Solarthermie. Für Solarthermie-Hybridheizungen in Wohngebäuden mit höchstens zwei Wohnungen sind 0,07 m 2 Kollektorfläche pro m 2 beheizter Nutzfläche und für Gebäude mit mehr als zwei Wohnungen 0,06 m 2 Kollektorfläche notwendig; die restliche Heizung muss dann mindestens 60 % erneuerbare Brennstoffe nutzen (GEG 2023: § 71h). Die Bundesländer können höhere Anteile vorschreiben. Über die Bundesförderung für effiziente Gebäude können Solaranlagen im Bestand gefördert werden. Allerdings nur, wenn die Sonnenkollektoren auch zur Heizungsunterstützung beitragen. Marktbeobachtung: Die neu installierte Kollektorfläche ist seit einigen Jahren rückläufig. Ihren Höhepunkt hatte sie im Jahr 2012, in dem ca,1,2 Mio. m 2 zugebaut wurden. Im Jahr 2022 wurden ca. 91.000 neue Solarthermieanlagen installiert, dieser Zubau entspricht ca. 710.000 m² damit wuchs in Deutschland die insgesamte installierte Solarkollektorfläche auf 22,1 Mio. m² an (BSW 2023). Der Endkundenumsatz lag 2022 bei ca. 930 Mio. Euro (nach einem Maximum in 2008 mit 1,7 Mrd. Euro) (⁠ UBA ⁠ 2023). Entsorgung von Solarthermiemodulen/-kollektoren Hinweis: Die Demontage und fachgerechte Entsorgung von Solarkollektoren wird in den allermeisten Fällen durch einen Handwerksbetrieb erfolgen. Andernfalls beachten Sie bitte das sich grundsätzlich die Vorschriften für die Entsorgung bestimmter Abfälle von Bundesland zu Bundesland und sogar von Kommune zu Kommune unterscheiden können. Wir empfehlen Ihnen daher, sich an die örtliche Abfallbehörde bzw. Abfallbehörde des Bundeslandes zu wenden – auch für die Frage der fachgerechten Entsorgung in Ihrem Kreis/ Ihrer Region. Solarthermiemodule/ -kollektoren ohne elektrische Funktionen zur reinen Wärme/Warmwassererzeugung sind über den öffentlich-rechtlichen Entsorgungsträger (z.B. kommunaler Wertstoffhof) der Sperrmüllsammlung zuzuführen. Solarflüssigkeit: Bitte beachten Sie, dass in den Solarkollektoren noch Solarflüssigkeit (z.B. 1,2-Propylenglycol) enthalten sein kann. Diese ist oftmals ein ⁠Gemisch⁠ aus 1,2-Propylenglycol und Wasser und ggf. weiteren Inhaltsstoffen. Alte Solarflüssigkeit für Solarkollektoren darf nicht einfach über das Abwasser, die Kanalisation, noch sonst wie in der Umwelt entsorgt werden. Solarflüssigkeit sollte vor der Entsorgung aus dem Kollektor entfernt werden und kann z.B. bei einer Schadstoffsammelstelle oder am kommunalen Wertstoffhof abgegeben werden. Reine Photovoltaik-/Solarmodule (PV-Module) die nur der Stromerzeugung dienen , sind Elektrogeräte und müssen nach den Vorgaben des ElektroG entsorgt werden. Das gilt auch für Hybridmodule bzw. Kombinationsmodule aus Photovoltaik und Solarthermie ("Solar-Hybridkollektor", "Hybridkollektor"), zur gleichzeitigen Strom- und Wärme-/Warmwassererzeugung. Mehr Informationen dazu auf der ⁠UBA⁠-Umwelttippseite zur Entsorgung von Elektroaltgeräten . Weitere Informationen finden Sie auf unseren ⁠ UBA ⁠-Themenseiten: Solarthermie Photovoltaik Energiesparende Gebäude Heizungstausch (UBA-Umwelttipp) Quellen BSW (2023): Statistische Zahlen der deutschen Solarwärmebranche (Solarthermie), Berlin GEG ( 2020 ; Änderung 2023 ) Gebäudeenergiegesetz - Gesetz zur Einsparung und zur Nutzung erneuerbarer Energien zur Wärme- und Kälteerzeugung in Gebäuden UBA (2023) : Zeitreihen zur Entwicklung der erneuerbaren Energien in Deutschland. Stand: Februar 2023. Dessau-Roßlau UBA (2018) : Emissionsbilanz erneuerbarer Energieträger - Bestimmung der vermiedenen Emissionen im Jahr 2017.(Climate Change | 23/2018)

Wohnen

Wohnen „Wohnen“ ist zusammen mit Mobilität und Ernährung der Konsumbereich, der die Umwelt am stärksten belastet, etwa durch Flächen-, Wasser- und Energieverbrauch, aber auch durch Schadstoffausstoß und Abfall. Private Haushalte haben aber auch erhebliche Möglichkeiten, diese Umweltbelastungen durch bewusste Konsumentscheidungen zu reduzieren. Seit 2011 wurden bis Ende 2023 etwa 3,1 Millionen neue Wohnungen in Deutschland gebaut, was einer Erhöhung des Wohnungsbestands von 7,4 Prozent entspricht. Bei einer Bevölkerungszunahme von etwa 4 Millionen Einwohnerinnen und Einwohnern im gleichen Zeitraum (entspricht rund 5,0 Prozent) wuchs der Wohnungsbestand also stärker als die Bevölkerung. Die Zunahme der Wohnfläche der privaten Haushalte, vor allem auch durch den flächenintensiven Neubau von Ein- und Zweifamilienhäusern, trägt zur dynamischen Ausweitung der Siedlungsflächen bei. Die Ausstattung und Nutzung neuer Wohnungen erfordert Möbel, Haushaltsgeräte sowie Energie etwa für die Raumwärme oder Warmwasserbereitung. Das Bedarfsfeld „Wohnen“ trägt daher zu einem hohen Anteil der Kohlendioxid-Emissionen des privaten Konsums bei, hauptsächlich durch Heizen, Warmwasser und den Stromverbrauch von Geräten. Trotz immer energieeffizienterer Gebäude und Geräte sinkt die durchschnittliche Kohlendioxid-⁠ Emission ⁠ des Wohnens pro Kopf und pro Jahr kaum. Die Effizienzgewinne werden durch Wachstum kompensiert. Zum Bedarfsfeld „Wohnen“ gehören neben dem Bedarf an Wohnfläche auch die Wassernutzung, der Energieverbrauch, die ⁠ Treibhausgas ⁠-Emissionen sowie die Abfälle privater Haushalte.

Solarenergie - Potenzial auf Dachflächen (Lkr.)

Technisches Potenzial aus Photovoltaik und Solarthermie (nur Warmwasserbereitung) auf Dachflächen je Landkreis in Bayern. Für die Photovoltaik ist außerdem der Ausbaustand, sowie die Aufteilung des Gesamtpotenzials auf Nutzungskategorien der Gebäude, als auch der Anteil denkmalgeschützter Gebäude dargestellt.

1 2 3 4 567 68 69