Grundlage des numerischen Seegangsvorhersagesystems im Deutschen Wetterdienst (DWD) ist ein spektrales Seegangsmodell der 3.Generation (3G-WAveModel). Spektrale Modelle beschreiben den Zustand des Seegangs über das sogenannte Frequenz-Richtungs-Seegangsspektrum – das ist die 2-dimensionale Verteilung der Wellenenergie nach Wellenfrequenz (bzw Wellenperiode oder Wellenzahl) und Ausbreitungsrichtung. In der gegenwärtigen Version wird eine Auflösung von 36 Richtungen und 30 Frequenzen (Wellenperioden zwischen 1.5 und 24 Sekunden) verwendet. Im numerischen Modell wird die zeitliche Entwicklung des Seegangsspektrums an einer Vielzahl von Punkten eines über die Meeresoberfläche gespannten Gitters berechnet. Die Wellenenergie ändert sich durch die folgenden physikalischen Prozesse: • Wellenwachstum durch den abwärts gerichteten Impulsfluss aus dem Windfeld • Wellenkinematik (Advektion, Refraktion) • Umverteilung der Energie zwischen den Wellenzahlen durch nichtlineare Wechselwirkungen • Dissipation (interne Reibung und Wellenbrechen) Ähnlich wie die Kette der Atmosphärenmodelle (ICON, ICON-EU und ICON-D2) ist das Seegangsvorhersagesystem in verschiedene Vorhersagegebiete gegliedert: Das globale Modell GWAM, das Europamodell EWAM und das hoch auflösende Küstenmodell CWAM. Der Modellseegang wird durch analysierte und vorhergesagte 10m-Winde der Atmosphärenmodelle angetrieben.
Grundlage des numerischen Seegangsvorhersagesystems im Deutschen Wetterdienst (DWD) ist ein spektrales Seegangsmodell der 3.Generation (3G-WAveModel). Spektrale Modelle beschreiben den Zustand des Seegangs über das sogenannte Frequenz-Richtungs-Seegangsspektrum – das ist die 2-dimensionale Verteilung der Wellenenergie nach Wellenfrequenz (bzw Wellenperiode oder Wellenzahl) und Ausbreitungsrichtung. In der gegenwärtigen Version wird eine Auflösung von 36 Richtungen und 30 Frequenzen (Wellenperioden zwischen 1.5 und 24 Sekunden) verwendet. Im numerischen Modell wird die zeitliche Entwicklung des Seegangsspektrums an einer Vielzahl von Punkten eines über die Meeresoberfläche gespannten Gitters berechnet. Die Wellenenergie ändert sich durch die folgenden physikalischen Prozesse: • Wellenwachstum durch den abwärts gerichteten Impulsfluss aus dem Windfeld • Wellenkinematik (Advektion, Refraktion) • Umverteilung der Energie zwischen den Wellenzahlen durch nichtlineare Wechselwirkungen • Dissipation (interne Reibung und Wellenbrechen) Ähnlich wie die Kette der Atmosphärenmodelle (ICON, ICON-EU und ICON-D2) ist das Seegangsvorhersagesystem in verschiedene Vorhersagegebiete gegliedert: Das globale Modell GWAM, das Europamodell EWAM und das hoch auflösende Küstenmodell CWAM. Der Modellseegang wird durch analysierte und vorhergesagte 10m-Winde der Atmosphärenmodelle angetrieben.
Grundlage des numerischen Seegangsvorhersagesystems im Deutschen Wetterdienst (DWD) ist ein spektrales Seegangsmodell der 3.Generation (3G-WAveModel). Spektrale Modelle beschreiben den Zustand des Seegangs über das sogenannte Frequenz-Richtungs-Seegangsspektrum – das ist die 2-dimensionale Verteilung der Wellenenergie nach Wellenfrequenz (bzw Wellenperiode oder Wellenzahl) und Ausbreitungsrichtung. In der gegenwärtigen Version wird eine Auflösung von 36 Richtungen und 30 Frequenzen (Wellenperioden zwischen 1.5 und 24 Sekunden) verwendet. Im numerischen Modell wird die zeitliche Entwicklung des Seegangsspektrums an einer Vielzahl von Punkten eines über die Meeresoberfläche gespannten Gitters berechnet. Die Wellenenergie ändert sich durch die folgenden physikalischen Prozesse: • Wellenwachstum durch den abwärts gerichteten Impulsfluss aus dem Windfeld • Wellenkinematik (Advektion, Refraktion) • Umverteilung der Energie zwischen den Wellenzahlen durch nichtlineare Wechselwirkungen • Dissipation (interne Reibung und Wellenbrechen) Ähnlich wie die Kette der Atmosphärenmodelle (ICON, ICON-EU und ICON-D2) ist das Seegangsvorhersagesystem in verschiedene Vorhersagegebiete gegliedert: Das globale Modell GWAM, das Europamodell EWAM und das hoch auflösende Küstenmodell CWAM. Der Modellseegang wird durch analysierte und vorhergesagte 10m-Winde der Atmosphärenmodelle angetrieben.
Der spanische Energieversorger Ente Vasco de la Energía (EVE) verkündete am 7. Juli 2011 auf seiner Internetseite, dass das Baskenland das erste kommerzielle Wellenkraftwerk Europas eingeweiht hat. Das Kraftwerk mit einer Leistung von 300 Kilowatt befindet sich vor der kleinen Stadt Mutriku an der Nordküste Spaniens, gelegen zwischen San Sebastian und Bilbao.
Das Projekt "Low-pressure turbines and control equipment for wave energy converters" wird vom Umweltbundesamt gefördert und von Ossberger-Turbinenfabrik GmbH & Co. durchgeführt. General Information: The intended research project will develop and test low pressure water turbines suitable for use in offshore wave energy converters (WEC). The turbines and the electric/hydraulic control systems will be optimised for use in the Wave Dragon - a 4 MW offshore WEC of the slack moored run-up type. Wave Dragon developed by the prime proposal, and the international patent application for this WEC were published in 1996. Low pressure turbines like the Ossberger cross-flow type and the Kaplan-propeller types have been commercial for a long time The existing turbines and the control equipment are nevertheless not suitable for use in WEC's, as pressure and water flow are strongly and rapidly fluctuating in offshore WEC's. The project will use computer modelling and large scale tank test of a simplified model of the Wave Dragon with working scale model turbines on board. These tests will be conducted at and by the Danish Maritime Institute. Development of turbines suitable for WEC's is a necessary step in the process of commercialising big offshore renewable energy plants like the Wave Dragon and thereby harness the vast energy resources in the European waters and in the oceans many places in the world, where the average power levels is high. Values of 70 kW wave-power pr. meter is not unusual. Prime Contractor: Löwenmark Consulting Engineers, F.R.I. by E. Friis-Madsen Aps; Copenhagen; Denmark.
Das Projekt "Ocean Energy Web-GIS" wird vom Umweltbundesamt gefördert und von Fraunhofer-Institut für Windenergie und Energiesystemtechnik (IWES) - Institutsteil Kassel durchgeführt. Das Ziel dieses Projekts ist das Design und die Implementierung eines interaktiven, webbasierten GIS (Geographisches Informationssystem) auf der OES-Homepage. Der Zweck dieser Anwendung ist es, interessierten Webseitenbesuchern detaillierte und weltweite Informationen mit Bezug zu Meeresenergien in Form einer optisch eindrucksvollen Kartenanwendung zu liefern. Die verfügbaren Informationen umfassen Meeresenergieanlagen, -Ressourcen und -Infrastruktur sowie weitere relevante geopolitische und geographische Informationen, allesamt dargestellt in Verbindung mit ihrem jeweiligen Standort bzw. Ausdehnung bzw. Verteilung auf einer weltweiten Karte.
Das Projekt "Nutzung der Meeresenergie in Deutschland" wird vom Umweltbundesamt gefördert und von Ecofys Germany GmbH - Niederlassung Berlin durchgeführt. Die Studie aus dem Jahr 2010 verfolgte das Ziel, die Grundlage für eine Neubewertung der Möglichkeiten zur Nutzung der Meeresenergie in Deutschland zu schaffen und die Bundesregierung damit hinsichtlich einer zukünftigen Förderungspraxis zu beraten. Der erste Teil der Studie umfasste die Bestimmung der Potentiale zur Nutzung der Meeresenergie in der deutschen Nord- und Ostsee. Ausgehend von einer detaillierten Recherche des weltweiten Stands der Technik und aktuellen Projekten zur Nutzung von Energie aus Strömung, Wellen, Gezeiten, Salz- und Temperaturgradienten wurde für jede dieser Energieformen das technische Potential in Deutschland bestimmt. Außerdem wurde eine Branchenumfrage unter deutschen Firmen und Experten mit Interesse an der Nutzung der Meeresenergie durchgeführt. Damit wurden die Möglichkeiten des Exports deutscher Meeresenergie-Technologie ins Ausland bewertet. Der dritte Teil der Studie umfasst eine detaillierte Analyse des deutschen Rechts- und Genehmigungsrahmens mit besonderem Fokus auf mögliche Barrieren zur Nutzung der Meeresenergie. Die Studienergebnisse bestätigten, dass das theoretische Potential für die Nutzung der Meeresenergie in Deutschland sowohl im Vergleich zu anderen Standorten auf der Welt als auch mit Blick auf die deutschen Ziele für den Ausbau der Erneuerbaren Energien zur Stromerzeugung gering ist. Allein das Potential des Tidenhubs, der Wellen- und der Strömungsenergie scheint an einzelnen Standorten kleinere Anwendungen zur Erprobung von Technologien möglich zu machen.
Das Projekt "Der Wasseraustausch im Tidebecken Hoernum-Tief" wird vom Umweltbundesamt gefördert und von Bundesamt für Seeschifffahrt und Hydrographie durchgeführt. Auf drei Messprofilen zwischen den Inseln Sylt und Amrum, Amrum und Foehr, sowie zwischen der Insel Foehr und dem Festland wurden im Fruehjahr und Herbst 1996 jeweils fuer 8 Wochen Stroemungen, Seegang, Truebung und Wasserstand gemessen. Hierbei wurden die Messreihen teilweise durch Blockierung der Geraete durch Treibgut (Seetang, Plastik etc.) und durch Geraeteverluste waehrend zwei schwerer Stuerme unterbrochen. Der Wasseraustausch zwischen dem Tidebecken und der Nordsee findet primaer zwischen Sylt und Amrum statt. Die mittleren Wassertransporte liegen dort zwischen 400 und 500 x 10 hoch 6 m3/Tide, entlang den anderen Profilen sind sie um 1-2 Groessenordnungen kleiner. Im noerdlichen Teil des Profils sind die Ebbestromgeschwindigkeiten (max. 1,3 m/s) merklich hoeher als die Flutstromgeschwindigkeiten, waehrend im suedlichen Teil der Flutstrom ueberwiegt (max. 1,8 m/s). Dabei ist die Ebbestromdauer deutlich laenger als die Flutstromdauer. Das auffaelligste Merkmal des Seegangs im Hoernum-Tief ist seine Veraenderlichkeit bezueglich Hoehe und Richtung als Folge der tidebedingten Wasserstandsschwankungen. Die maximale signifikante Wellenhoehe auf dem Profil Sylt-Amrum betrug 2 m. Grundsaetzlich betraegt die Wellenenergie suedlich von Sylt nur noch einen Bruchteil der Wellenenergie im offenen Seegebiet westlich von Sylt. Die Verteilungsmuster der Schwebstoffe werden massgeblich durch den Tidestrom verursacht. Der hiermit verbundene Sedimenttransport wird von ebenfalls tidebedingten aber kuerzer-periodischen Sedimentations- und Resuspensionsprozessen ueberlagert.
Das Projekt "Wave energy device: broadband seapower energy recovery buoy" wird vom Umweltbundesamt gefördert und von IBK Ingenieurbüro durchgeführt. General Information: To design and develop a moored buoy device to extract energy from sea-wave motion. In particular, this device will take advantage of a broadband frequency range, and will achieve power generation at a significant cost saving. Prime Contractor: Starweld Limited; Hayle; United Kingdom.
Das Projekt "Ermittlung von Wellen- und Windstaugrößen für den Trebelsee / Untere Havel-Wasserstraße (UHW)" wird vom Umweltbundesamt gefördert und von Technische Universität Dresden, Institut für Wasserbau und Technische Hydromechanik durchgeführt. Der Trebelsee mit einer Fläche von 3 Quadratkilometern im Land Brandenburg ist Teil der Unteren Havel-Wasserstraße (UHW) und wird durch die Havel durchflossen. Im Rahmen des Ausbaus der UHW ist die Planung erforderlicher Uferschutzmaßnahmen notwendig. Neben schiffserzeugten Wellen stellen die Windwellen die wichtigsten Belastungsgrößen der Ufer des Trebelsees dar. Ziel der Bearbeitung ist die Ermittlung signifikanter Wellenparameter an definierten Lokationen im Seegebiet als Bemessungsgrundlage. Des Weiteren werden für den Trebelsee Windstauanalysen durchgeführt.