Das Projekt "The role of turgor in rain-cracking of sweet cherry fruit" wird vom Umweltbundesamt gefördert und von Leibniz Universität Hannover, Institut für Biologische Produktionssysteme, Fachgebiet Obstbau durchgeführt. Rain-cracking limits the production of many soft and fleshy fruit including sweet cherries world wide. Cracking is thought to result from increased water uptake through surface and pedicel. Water uptake increases fruit volume, and hence, turgor of cells (Pcell) and the pressure inside the fruit (Pfruit) and subjects the skin to tangential stress and hence, strain. When the strain exceeds the limits of extensibility the fruit cracks. This hypothesis is referred to as the Pfruit driven strain cracking. Based on this hypothesis cracking is related to two independent groups of factors: (1) water transport characteristics and (2) the intrinsic cracking susceptibility of the fruit defined as the amount of cracking per unit water uptake. The intrinsic cracking susceptibility thus reflects the mechanical constitution of the fruit. Most studies focussed on water transport through the fruit surface (factors 1), but only little information is available on the mechanical constitution (i.e., Pfruit and Pcell, tensile properties such as fracture strain, fracture pressure and modulus of elasticity of the exocarp; factors 2). The few published estimates of Pfruit in sweet cherry are all obtained indirectly (calculated from fruit water potential and osmotic potentials of juice extracts) and unrealistically high. They exceed those measured by pressure probe techniques in mature grape berry by several orders of magnitude. The objective of the proposed project is to test the hypothesis of the Pfruit driven strain cracking. Initially we will focus on establishing systems of widely differing intrinsic cracking susceptibility by varying species (sweet and sour cherry, Ribes and Vaccinium berries, plum, tomato), genotype (within sweet cherry), stage of development and temperature. These systems will then be used for testing the hypothesis of Pfruit driven strain cracking. We will quantify Pfruit und Pcell by pressure probe techniques and compression tests and the mechanical properties of the exocarp using biaxial tensile tests. When the presence of high Pfruit and Pcell is confirmed by direct measurements, subsequent studies will focus on the mode of failure of the exocarp (fracture along vs. across cell walls) and the relationship between failure thresholds and morphometric characteristics of the exocarp. However, when Pfruit und Pcell are low, the hypothesis of Pfruit driven strain cracking must be rejected and the mechanistic basis for low pressures (presence of apoplastic solutes) clarified on a temporal (in the course of development) and a spatial scale (exocarp vs. mesocarp). We focus on sweet cherry, because detailed information on this species and experience in extending the short harvest period is available. Where appropriate, other cracking susceptible species (sour cherry, plum, Vaccinium, Ribes, tomato) will be included to further extend the experimental period and to maximize the range in intrinsic cracking susceptibility.
Das Projekt "B 3.1: Efficient water use of mixed cropping systems in watersheds of Northern Thailand highlands" wird vom Umweltbundesamt gefördert und von Universität Hohenheim, Institut für Kulturpflanzenwissenschaften (340), Fachgebiet Düngung und Bodenstoffhaushalt (340i) durchgeführt. Worldwide an important part of agricultural added value is produced under irrigation. By irrigation unproductive areas can be cultivated, additional harvests can be obtained or different crops can be planted. Since its introduction into Northern Thailand lychee has developed as one of the dominating cash crops. Lychee is produced in the hillside areas and has to be irrigated during the dry season, which is the main yield-forming period. Water therefore is mainly taken from sources or streams in the mountain forests. As nowadays all the available resources are being used do to increased production, a further increase in production can only be achieved by increasing the water use efficiency. In recent years, partial root-zone drying has become a well-established irrigation technique in wine growing areas. In a ten to fifteen days rhythm one part of the root system is irrigated while the other dries out and produces abscisic acid (ABA) a drought stress hormone. While the vegetative growth and thus labor for pruning is reduced, the generative growth remains widely unaffected. Thereby water-use efficiency can be increased by more than 40Prozent. In this sub-project the PRD-technique as well as other deficit irrigation strategies shall be applied in lychee and mango orchards and its effects on plant growth and yield shall be analyzed. Especially effects of this water-saving technology on the nutrient balance shall be considered, in order to develop an optimized fertigation strategy with respect to yield and fruit quality. As shown in preliminary studies, the nutrient supply is low in soils and fruit trees in Northern Thailand (e.g. phosphate) and even deficient for both micronutrients boron (B) and zinc (Zn). Additionally, non-adapted supply of nitrogen (mineralization, fertilization) can induce uneven flowering and fruit set. Therefore, improvement is necessary. For a better understanding of possible influence of low B and Zn supply on flowering and fruit set, mobility and retranslocation of both micronutrients shall be investigated for mango and lychee. Finally, the intended system of partial root-zone fertigation (PRF) shall guarantee an even flowering and a better yield formation under improved use of the limited resource water. As this modern technique, which requires a higher level of irrigation-technology, cannot be immediately spread among the farmers in the region, in a parallel approach potential users shall be integrated in a participative process for adaptation and development. Water transport and irrigation shall be considered, as both factors offer a tremendous potential for water saving. Local knowledge shall be integrated in the participatory process (supported by subproject A1.2, Participatory Research) in order to finally offer adapted technologies for application within PRF systems for the different conditions of farmers in the hillsides of Northern Thailand.
Das Projekt "D 1.2: Reducing alternation and production of off-season fruits in Lychee, Longan and Mango" wird vom Umweltbundesamt gefördert und von Universität Hohenheim, Institut für Kulturpflanzenwissenschaften (340), Fachgebiet Düngung und Bodenstoffhaushalt (340i) durchgeführt. The aim and vision of sub-project D1.2 was and is to encourage hillside farmers to plant erosion resistant fruit trees instead of erosion susceptible annual plants. For that reason, experiments to overcome the irregular bearing behaviour of the three most common fruit tree species in Northern Thailand (Litchi, Longan and Mango) from the first SFB period will be continued in order to make their planting more attractive to the farmers. Considerable progress has been made in D1 during the past 3 years to induce flowers and fruit in Longan trees by the application of KClO3 . With this technique, it was not only possible to induce year around flowers and fruit (off season fruit) but also to overcome the generally rather irregular fruiting behaviour of these trees. A similar technique is now being developed for Mango by using an inhibitor of the bio-synthesis of the plant hormone gibberellin. Only Litchi still resist this kind of manipulation by an 'off season technique' (OST). Great effort will therefore be devoted establishing a similar system for this species as well. Reliably, this can only be done by gaining a much better knowledge of the - most certainly hormonal - regulatory system that governs flower induction in trees. Investigations into the hormonal changes taking place during natural and induced flower induction is, therefore, one of the central objectives in this sub-project, with the goal to better understand the process of flower induction. Until now most of the progress in this area is entirely empirical in nature and a more specific manipulation therefore difficult. While the ability to produce off season fruit all year around and under various weather conditions has brought about a great number of new possibilities, new challenges will still be faced with regard to these methods. These circumstances will affect the whole production chain from the orchard to the market and consumer. In order to better investigate and understand these new situations, a large model experiment with Mango will be set up and problems like tree pruning, water and nutrient demand, phytopathological problems, demand on work force, fruit processing and drying etc. will be investigated by the interdisciplinary co-operation of 8 sub-projects within the SFB. The results obtained during these investigations will be shared with hillside farmers enabling them to take advantage of these new possibilities, which will provide for more reliable yields and allow them to market fruit year around. In general, these new opportunities should encourage farmers to plant more trees and thus reduce erosion. However, to make this system not only reliable and economic but also ecologically and socially beneficial to the society all potential benefits as well as risks have to be evaluated carefully from all different aspects.
Das Projekt "D 7: Research for improved fish nutrition and fish health in upland aquaculture systems in Yen Chau, Son La Province, Northern Vietnam" wird vom Umweltbundesamt gefördert und von Universität Hohenheim, Institut für Tierproduktion in den Tropen und Subtropen (480), Fachgebiet Aquakultur-Systeme und Tierernährung in den Tropen und Subtropen (490i) durchgeführt. Background: Aquaculture significantly contributes to protein supply and cash income of Black Thai farmers in Yen Chau, Son La province, Northern Vietnam. Fish is produced for cash income (2/3rd) and subsistence (1/3rd) while self recruiting species (small fish, crustaceans and molluscs) provide additional protein for home consumption. The current aquaculture system is a polyculture of the macroherbivorous grass carp as main species together with 3-5 other non-herbivorous fish species like Common Carp, Silver Carp, Bighead Carp, Mud Carp, Silver Barb and Nile Tilapia. With a rearing period of 21 months, the productivity of the aquaculture system amounts to 1.54 +- 0.33 t ha-1 a-1 and can be characterized as low. Nearly each household has at least one pond, which serves multiple purposes and is operated as a flow-through-system. The steady water flow is advantageous for the culture of grass carp, but causes a continuous loss of nutrients and high turbidity and thereby limits the development of phytoplankton and zooplankton which are natural food for non-herbivorous species. The farmers are using mainly green leaves (banana, bamboo, cassava, maize and grass) and crop residues (rice bran, rice husk, cassava root peel, distillery residue) as feed input, which is available to Grass Carp while non-herbivorous fish species are not fed specifically. Manure is used as fertilizer. The uneaten parts of fed plants are sometimes accumulating in the pond over several years, resulting in heavy loads of organic matter causing oxygen depletion. Anaerobic sediment and water layers limit the development of zoobenthos and may provide a habitat for anaerobe disease agents. Since 2003 an unknown disease condition has been threatening Grass Carp production and is having a major economic impact on the earnings from fish farming in Yen Chau region. Other fish in the same ponds are not affected. Especially in March-April and in September-October the disease is causing high morbidity and mortalities of Grass Carp in affected ponds and is thereby decreasing the dietary protein supply and income generation of Black Thai farmers. Little is known about the definition or aetiology of the disease condition.
Das Projekt "'CADY' Central Asian Climate Dynamics" wird vom Umweltbundesamt gefördert und von Universität Berlin, Institut für Meteorologie WE03, Fachrichtung Wechselwirkung im Klimasystem der Erde, Arbeitsgruppe Modellierung des Klimasystems durchgeführt. Global climate change is one of the key concerns of the 21st century, with serious implications for economies, societies and the environment. Central Asia, though rich in mineral resources, suffers from water scarcity. Since all the Central Asian countries rely heavily on irrigated agriculture, future climate change will strongly impact water availability, energy security, and sustainable development in the region. This issue needs to be urgently addressed, because any changes in the factors governing regional hydrology, or the magnitude of their impact (e.g. severity of droughts and floods) would be critical for infrastructural planning and securing food supplies in a global warming scenario. The project CADY (Central Asian Climate Dynamics) aims to reconstruct the Holocene climate variability and regional hydrology in the Central Asia along two W-E transects sandwiching the Tibetan Plateau and one N-S transect cutting across the Plateau. We will use a multiarchive, multiproxy approach and additionally focus on selected time slices (e.g. early Holocene warm period, the Medieval Warm Period, the Little ice age etc). Palaeoclimate simulations of different duration and on selected time slices will be carried out using the generated data. The combination of proxy data and model simulations will lead to an improved understanding of the physical mechanisms controlling the monsoon dynamics.
Das Projekt "Integrated Tyre and Road Interaction (ITARI)" wird vom Umweltbundesamt gefördert und von Müller-BBM Gesellschaft mit beschränkter Haftung durchgeführt. Objective: Future trends indicate that passenger road traffic will increase by 20Prozent from 1998 to 2010. Goods transport by road is predicted to increase by almost 40Prozent during this period. To assure that road transport can be considered as sustainable, it is necessary to reduce the negative consequences of road traffic to an acceptable level. Road traffic with its conventional heat-engine vehicles is one of the main sources of urban pollution from greenhouse gases. It also contributes to the European Union's excessive energy consumption. With increasing efficiency of engines, secondary effects such as rolling resistance, now play a dominant role when aiming for further reduction of fuel consumption. Road traffic noise is a major environmental problem. At the CALM workshop a reduction of 19 dB were suggested as short-term target for the year 2010. A major component of road traffic noise is now tyre/road noise. Therefore to achieve the proposed reduction targets it is necessary to reduce tyre/road noise, which is still in the domain of research rather than existing knowledge. Safety is the crucial demand on road surfaces, so design of new low noise textures or textures with low rolling resistance must not risk the grip potential (especially under wet conditions). Currently more than 40,000 persons are killed on EU roads every year, but the strategic objective is to cut this number by 50Prozent within the next eight years and 75Prozent by 2025. The objective of ITARI is to provide the necessary tools to investigate new road surfaces with lower noise emission and lower fuel consumption and at the same time meeting safety requirements. In addition to this ITARI will demonstrate the implementation of virtually prototyped road surfaces in the production process of road surfaces. ITARI will supply knowledge, methodology and insight to enable the research community to develop sustainable road transport for the future.' Prime Contractor: Chalmers,Tekniska Hogskola AB, Department of Applied Acoustics; Gothenburg; Sverige (Sweden).
Das Projekt "Süd-Nord-Dialog - Gerechtigkeit im Treibhaus" wird vom Umweltbundesamt gefördert und von Wuppertal Institut für Klima, Umwelt, Energie gGmbH durchgeführt. Das Inkrafttreten des Kyoto-Protokolls am 16. Februar 2005 markiert einen Wendepunkt für die internationale Klimapolitik. Erstmals haben die Industriestaaten verbindliche Pflichten zur Begrenzung ihrer Treibhausgasemissionen übernommen. Gleichwohl bleiben die zukünftigen Herausforderungen enorm. Zieht man die Notwendigkeit gesteigerter Emissionseinsparungen zur Vermeidung 'gefährlichen' Klimawandels einerseits und die erforderliche Unterstützung der durch den Klimawandel am verwundbarsten Regionen andererseits in Betracht, werden die Entwicklungsländer im Rahmen der Post-2012 Verhandlungen eine Schlüsselrolle übernehmen. Das zähe Ringen der letzten Jahre um die Zukunft internationalen Klimaschutzes macht den Bedarf für eine sorgfältige Vorbereitung der Verhandlungen um ein Post-2012 Abkommen unter Einbeziehung aller relevanten Akteure offenkundig. Vor diesem Hintergrund haben das Wuppertal Institut und das Energy Research Center (Südafrika) einen Dialog zwischen 14 Wissenschaftlern aus allen Weltregionen, vornehmlich aus Entwicklungsländern, initiiert, um über mögliche Eckpfeiler eines zukünftigen Klimaregimes zu diskutieren. Ziel dieses 'Süd-Nord Dialog - Gerechtigkeit im Treibhaus' war es, einen offenen Austausch über unterschiedliche Sichtweisen und Positionen in einer vertrauensvollen Atmosphäre zu ermöglichen. Ergebnis dieses Dialogs ist der gemeinsame Vorschlag 'Towards an adequate and equitable global climate agreement', der einen Rahmen für die Ausgestaltung eines zukünftigen Klimaabkommens aufzeigt sowie Erfordernisse für den politischen Prozess darlegt. Dieses Paket von Politikempfehlungen umfasst ein Modell für die faire Aufteilung von Klimaschutzpflichten, das eine starke Reduzierung der Emissionen im Norden aber auch Minderungspflichten unterschiedlicher Art für Entwicklungsländer vorsieht. Der Vorschlag beinhaltet darüber hinaus Empfehlungen für die Ausgestaltung einer Politik zur Anpassung an den Klimawandel, da zukünftige Vereinbarungen, wollen sie als fair wahrgenommen werden, Mechanismen für die Unterstützung der am meisten durch den Klimawandel verwundbaren Regionen enthalten müssen. Schließlich wird eine Vorreiterstrategie für den politischen Prozess aufgezeigt, um ein derartiges Klimaschutzabkommen auf internationaler Ebene voranzutreiben. In einer zweiten Projektphase ist der Dialog auf die politische Ebene ausgeweitet worden. Dazu werden in Asien, Afrika und Lateinamerika Workshops mit Klima-Verhandlern aus der jeweiligen Region ausgerichtet. Ziel ist es, zum einen die Kernelemente des Vorschlags zu diskutieren, zum anderen gegenseitiges Verstehen und Vertrauen unter den Klima-Verhandlern zu fördern, um auf diese Weise die Post-2012 Verhandlungen zu erleichtern. Zwei regionale Workshops haben bislang in Dar-es-Salaam (Tansania, Oktober 2004) und in Jakarta (Indonesien, Mai 2005) stattgefunden. Die regionalen Workshops werden durch einen lateinamerikanischen Workshop in Mexiko City im Februar 2006 komplettiert.
Das Projekt "Genomic dissection of floral transition in Brassica napus towards crop improvement by life cycle adaptation and hybrid yield increase" wird vom Umweltbundesamt gefördert und von Christian-Albrechts-Universität zu Kiel, Institut für Pflanzenbau und Pflanzenzüchtung, Lehrstuhl Pflanzenzüchtung durchgeführt. Rapeseed (Brassica napus L.) suffers from low genetic variation due to the short history of this species. Breeders try to broaden the genetic basis by gene introgression from non-adapted material from other geographic regions of the world. However, use of these materials is hampered, among others, by non-adapted flowering time (FTi). Here an integrated project is proposed to get a deeper understanding of FTi by global expression analysis and cloning of major FTi regulators. Candidate genes will be mapped by recombination mapping and, in collaboration with other groups, by association mapping. As a proof of concept study, relevant sequences will be mapped to recombinant lines carrying exotic rapeseed introgressions. The 2nd part of the project will study the relevance of 4 FTi genes for heterosis. Assuming that sequence variation within these genes will have an impact on seed yield and biomass heterosis, mutants will be identified by TILLING. The mutants will be analyzed and crosses will be made to determine heterosis of F1 hybrids in the 2nd funding period.
Das Projekt "Effectiveness of low emission zones: Large scale analysis of changes in environmental NO2, NO and NOx concentrations in 17 German cities" wird vom Umweltbundesamt gefördert und von Evonik Industries AG durchgeführt. Background: Low Emission Zones (LEZs) are areas or roads where the most polluting vehicles are restricted from entering. The effectiveness of LEZs to lower ambient exposures is under debate. This study focused on LEZs that restricted cars of Euro 1 standard without appropriate retrofitting systems from entering and estimated LEZ effects on NO2, NO, and NOx (=NO2+NO) concentrations. Methods: Continuous half-hour and diffuse sampler 4-week average NO2, NO, and NOx concentrations measured inside and outside LEZs in 17 German cities of 6 federal states (2005-2009) were analysed as matched quadruplets (two pairs of simultaneously measured index values inside LEZ and reference values outside LEZ, one pair measured before and one after introducing LEZs with time differences that equal multiples of 364 days) by multiple linear and log-linear fixed-effects regression modelling (covariables: e.g., wind velocity, amount of precipitation, height of inversion base, school holidays, truck-free periods). Additionally, the continuous half-hour data was collapsed into 4-week averages and pooled with the diffuse sampler data to perform joint analysis. Results: More than 3,000,000 quadruplets of continuous measurements (half-hour averages) were identified at 38 index and 45 reference stations. Pooling with diffuse sampler data from 15 index and 10 reference stations lead to more than 4,000 quadruplets for joint analyses of 4-week averages. Mean LEZ effects on NO2, NO, and NOx concentrations (reductions) were estimated to be at most - 2 microgram/m3 (or - 4 percent). The 4-week averages of NO2 concentrations at index stations after LEZ introduction were 55 microgram/m3 (median and mean values) or 82 microgram/m3 (95th percentile). Conclusion: This is the first study investigating comprehensively the effectiveness of LEZs to reduce NO2, NO, and NOx concentrations controlling for most relevant potential confounders. Our analyses indicate that there is a significant, but rather small reduction of NO2, NO, and NOx concentrations associated with LEZs. Key words: air quality, low emission zone, NO2, NO and NOx, air pollution
Das Projekt "Effekte von Nickel auf eine aquatische Lebensgemeinschaft in Mikrokosmen" wird vom Umweltbundesamt gefördert und von Fraunhofer-Institut für Molekularbiologie und Angewandte Oekologie durchgeführt. Quality standards to assess the chemical status of water bodies under the Water Framework Directive are often based on a few standardized laboratory tests and fixed assessment factors for extrapolation to the field situation. If larger data sets including tests with non-standard species are available, a statistical extrapolation approach, the Species Sensitivity Distribution approach (SSD) is applied. For assessing the remaining uncertainty on the SSD, the threshold concentration derived can be compared with data from field monitoring or model ecosystem studies. Taking the priority substance Ni as an example we present the use of microcosms to test the protectiveness of the quality standard derived from laboratory toxicity tests. The study was conducted in 14 microcosms including a natural sediment layer and an overlaying water volume of 750 L located in a greenhouse. After a pre-treatment period for establishing a diverse aquatic community of phytoplankton, zooplankton, periphyton and snails, Ni solution was added to reach concentrations of 6, 12, 24, 48 and 96 micro g Ni/L in two microcosms each. Four microcosms served as untreated controls. To achieve the intended constant exposure over the test period of four months, Ni concentrations were frequently determined in the microcosms and appropriate amounts of nickel solution were added mostly on a daily basis. Parameters known to affect Ni toxicity, i.e. water hardness, pH, and dissolved organic carbon, were also measured. Population abundance and community structure were analysed for difference to the dynamics in the controls. In the microcosms with 48 and 96 micro g Ni/L long-term effects on phytoplankton, rotifers, snails and, due to reduced grazing by snails, indirectly on the periphyton biomass were observed. Only minor, and/or temporary deviations from controls, i.e., for single sampling dates, were found for a few algae taxa at lower concentrations. Because these deviations showed no clear dose-response and were not found at the end of the study they were not seen as adverse effects. However, for the snail (Lymnaea stagnalis), effects on the trend of population development could not be excluded at 24 micro g/L. Thus, the overall No Observed Effect Concentration (NOEC) for a chronic exposure to nickel in this microcosm study was considered to be 12 micro g Ni/L. This NOEC confirms the protectiveness of the quality standard derived from the laboratory single species tests.
Origin | Count |
---|---|
Bund | 77 |
Type | Count |
---|---|
Förderprogramm | 77 |
License | Count |
---|---|
open | 77 |
Language | Count |
---|---|
Deutsch | 77 |
Englisch | 76 |
Resource type | Count |
---|---|
Keine | 67 |
Webseite | 10 |
Topic | Count |
---|---|
Boden | 75 |
Lebewesen & Lebensräume | 76 |
Luft | 67 |
Mensch & Umwelt | 77 |
Wasser | 65 |
Weitere | 77 |