API src

Found 35 results.

Coal-fired power generation and climate protection until 2030

With this position paper, the ⁠ UBA ⁠ proposes strategic measures and targeted climate policy instruments for achieving a reduction in coal-fired power generation for the period up until 2030. To achieve a disproportionately high reduction in greenhouse gas emissions by the energy sector as a contribution to achieving the climate protection targets by 2020, the UBA recommends to limit coal-fired power generation to 4,000 full-load hours per year for hard coal and lignite power plants that are at least 20 years old and additional closure of at least 5 GW of the oldest lignite power plants. To ensure that the energy sector comfortably achieves its targeted reduction in greenhouse gas emissions by 2030, the UBA recommends in addition to limit coal-fired power generation the closure of the oldest lignite and hard coal power plants following the Nuclear Power Phase-Out in 2022 to a maximum remaining output of 19 GW. Veröffentlicht in Position.

Steinkohle

Systemraum: Kohleabbau, Zerkleinerung, Homogenisierung Geographischer Bezug: Deutschland Zeitlicher Bezug: 2000 - 2004 Weitere Informationen: Die Bereitstellung von Investionsgütern wird in dem Datensatz nicht berücksichtigt. Allgemeine Informationen zur Förderung und Herstellung: Art der Förderung: ca 25% Tagebau; 75% Untertagebau Rohstoff-Förderung: China 44,5% USA 18,7% Indien 7,4% Australien 5,7% Hartkohle (Steinkohle, Hartbraunkohle, Anthrazit) im Jahr 2006 Fördermenge weltweit: 5356400000t Hartkohle Reserven: 736112000000t Hartkohle Statische Reichweite: 137a

Markt für Mangan

technologyComment of manganese production (RER): The metal is won by electrolysis (25%) and electrothermic processes (75%). ELECTROLYSIS OF AQUEOUS MANGANESE SALTS The production of manganese metal by the electrolysis of aqueous manganese salts requires at first a milling of the manganese ore. Milling increases the active surface and ensures sufficient reactivity in both the reduction and the subsequent leaching steps. After milling the manganese ore is fed to a rotary kiln where the reduction and calcination takes place. This process is carried out at about 850 - 1000 ºC in a reducing atmosphere. As a reducing agent, several carbon sources can be used e.g. anthracite, coal, charcoal and hydrocarbon oil or natural gas. The cal-cined ore needs to be cooled below 100 ºC to avoid a further re-oxidation. The subsequent leaching process is carried out with recycled electrolyte, mainly sulphuric acid. After leaching and filtration the iron content is removed from the solution by oxidative precipitation and the nickel and cobalt are removed by sulphide precipitation. The purified electrolyte is then treated with SO2 in order to ensure plating of γ-Mn during electrolysis. Electrolysis is carried out in diaphragm cells. The cathode is normally made of stainless steel or titanium. For the anode lead-calcium or lead-silver alloy can be used. After an appropriate reaction time the cathodes are removed from the electrolysis bath. The manganese that is deposited on the cathode starter-sheet is stripped off mechanically and then washed and dried. The metal is crushed to produce metal flakes or powder or granulated, depending on the end use. ELECTROTHERMAL DECOMPOSITION OF MANGANESE ORES The electrothermal process is the second important process to produce manganese metal in an industrial scale. The electrothermal process takes place as a multistage process. In the first stage manganese ore is smelted with only a small amount of reductant in order to reduce mostly the iron oxide. This produces a low-grade ferro-manganese and a slag that is rich in Mn-oxide. The slag is then smelted in the second stage with silicon to produce silicomanganese. The molten silicomanganese can be treated with liquid slag from the fist stage to obtain relatively pure manganese metal. For the last step a ladle or shaking ladle can be used. The manganese metal produced by the electrothermal process contains up to 98% of Mn. Overall emissions and waste: Emissions to air consist of dust and fume emissions from smelting, hard metal and carbide production; Other emissions to air are ammonia (NH3), acid fume (HCl), hydrogen fluoride (HF), VOC and heavy metals. Effluents are composed of overflow water from wet scrubbing systems, wastewater from slag and metal granulation, and blow down from cooling water cycles. Waste includes dust, fume, sludge and slag. References: Wellbeloved D. B., Craven P. M. and Waudby J. W. (1997) Manganese and Manganese Alloys. In: Ullmann's encyclopedia of industrial chemistry (ed. Anonymous). 5th edition on CD-ROM Edition. Wiley & Sons, London. IPPC (2001) Integrated Pollution Prevention and Control (IPPC); Reference Document on Best Available Techniques in the Non Ferrous Metals Industries. European Commission. Retrieved from http://www.jrc.es/pub/english.cgi/ 0/733169 technologyComment of manganese production (RoW): The metal is won by electrolysis (assumption: 25%) and electrothermic processes (assumption: 75%). No detailed information available, mainly based on rough estimates. technologyComment of treatment of non-Fe-Co-metals, from used Li-ion battery, hydrometallurgical processing (GLO): The technique SX-EW is used mainly for oxide ores and supergene sulphide ores (i.e. ores not containing iron). It is assumed to be used for the treatment of the non-Fe-Co-metals fraction. The process includes a leaching stage followed by cementation or electro-winning. A general description of the process steps is given below. In the dump leaching step, copper is recovered from large quantities (millions of tonnes) of strip oxide ores with a very low grade. Dilute sulphuric acid is trickled through the material. Once the process starts it continues naturally if water and air are circulated through the heap. The time required is typically measured in years. Sulphur dioxide is emitted during such operations. Soluble copper is then recovered from drainage tunnels and ponds. Copper recovery rates vary from 30% to 70%. Cconsiderable amounts of sulphuric acid and leaching agents emit into water and air. No figures are currently available on the dimension of such emissions. After the solvent-solvent extraction, considerable amounts of leaching residues remain, which consist of undissolved minerals and the remainders of leaching chemicals. In the solution cleaning step occur precipitation of impurities and filtration or selective enrichment of copper by solvent extraction or ion exchange. The solvent extraction process comprises two steps: selective extraction of copper from an aqueous leach solution into an organic phase (extraction circuit) and the re-extraction or stripping of the copper into dilute sulphuric acid to give a solution suitable for electro winning (stripping circuit). In the separation step occurs precipitation of copper metal or copper compounds such as Cu2O, CuS, CuCl, CuI, CuCN, or CuSO4 • 5 H2O (crystallisation) Waste: Like in the pyrometallurgical step, considerable quantities of solid residuals are generated, which are mostly recycled within the process or sent to other specialists to recover any precious metals. Final residues generally comprise hydroxide filter cakes (iron hydroxide, 60% water, cat I industrial waste).

Use of a new type of anthracite curner and boiler in a power station

Das Projekt "Use of a new type of anthracite curner and boiler in a power station" wird vom Umweltbundesamt gefördert und von Sophia-Jacoba GmbH, Steinkohlenbergwerk durchgeführt. Objective: To demonstrate the use of an innovative, low pollutant burner of low volability anthracite, in a power station, in combination with a boiler system linked to a coal mine, thus solving the problems of mineral oil substitutes, use of low volability coal, SO2 separation, nitrogen removal, adjustability and economy. General Information: The burner design, divided into pre-burner and main burner, means that the ignition and burning of the coal dust can be maintained without brick-lined burner walls and heated combustion air. Due to the type of air passage and course of combustion, the combusted ash is drawn off dry; the boiler can be dimensioned without the need to take waste gas loading into account. The direction of the air and combustion allows 'the cold' combustion with low NOx concentrations. By the addition of lime dust, waste gases are desulphurised in the burner. After grinding to dust, fine coal is passed from storage silos to 7 burners then passed for pre-burning where it is ignited using propane gas; this is gradually decreased (after warming the pre -burner) as the coal dust passes in. This, then, continues to burn by recirculation of hot exhaust gases and continuous glowing coal-dust residue at the end of the pre -burner/start of the main burner. Air supply is via nozzles at the end of the burner which allows combustion control, termination and separation of air particles for easy disposal. To reduce SO2, lime dust is added in the main burner. Waste gas is filtered prior to emission to the atmosphere. The advantage of low-volability coals are: - easier storage (fewer volatile components); - easier transport by road, without need for special measures; - no danger from explosion since anthracite dust is not self -igniting, and there is no risk to groundwater. It is comparable to gas or oil-fired systems from the viewpoint of handling, storage and burning. Achievements: The burners were able to ignite and burn low volatile coal in the combustion chambers of this unit, however, an operation of the boiler was not possible. Reasons were the temperature level, flow behaviour, heat expansion and instabilities of the feed water flow. Thus the project failed. The calculation of expected and actual simple payback was originally based on a comparison with oil burning installations. Based on today's oil price a re-evaluation does not turn out favourable for coal. Furthermore, a realistic comparison cannot be conducted due to the defective boiler.

Production of hydrogen for the hydrogenation of heavy oil and coal (plant assembly phase)

Das Projekt "Production of hydrogen for the hydrogenation of heavy oil and coal (plant assembly phase)" wird vom Umweltbundesamt gefördert und von Veba Öl AG durchgeführt. Objective: To erect a demonstration gasifier including the metering and monitoring devices. General Information: The project started in 1981 with the design of the plant, the obtaining of the approval, the basic - and detail - engineering and the acquisition of the necessary material and equipment. The current phase includes the erection of the gasifier. The gasifier of the demonstration plant is designed to produce 40000 m3/h synthesis gas. This corresponds to a feed rate of 16 t /h. The gasification pressure is 60 bars. The dust free raw gas from the demonstration plant is directed to the raw gas shift conversion, H2S/CO2 - removal and pressure swing adsorption units. The safe feeding operation of liquid hydrogenation residues is insured by special suspension pumps. The dosage of the LTC coke and the hard coal will be carried out employing the extruder feeding system for solid fuels developed by VEBA OEL on pilot plant scale. The main component of the feeding system is a twin screw extruder. In the feeder the finely ground coal or coke are mixed intensively with about 15 per cent water or oil and pressurized to form a gas-tight plug. At the extruder outlet the pressurized feed-stock is pulverised in a specifically designed discharge head and transferred by steam via a specially designed burner into the gasification reactor. Achievements: A preplanning phase served to investigate different concepts with respect to process flow, the technical design of the main parts and the integration of the demonstration plant into the RUHR OEL refinery in Gelsenkirchen-Scholven. For two process variants the basic engineering was carried out for the main process steps; a pre-basic was worked out for the conventional units of the plant, i. e. grinding, crude gas shift conversion and H2S/CO2 scrubbing. Detailed documents including construction drawings were produced for the main parts e. g. the extruder feeding-system, the burner and the gasification reactor. In order to determine whether the gasification plant would qualify for approval by the authorities a preliminary application in accordance with P9 of the Federal Environmental Protection (Immission) Act was prepared and submitted. After a thorough examination of the application and a discussion on the objections the preliminary approval was guaranted. To conclude the investigations, the investment cost were determined and the economic viability was examined for both process alternatives. The investigations have shown that a large-scale plant for the gasification of hydrogenation residues and coal is technically feasible and does quality for approval. The low energy price level does for the time being, however, not permit a cost-covering operation of coal gasification or coal hydrogenation plants. Measures are, therefore, examined to improve the economic viability of gasification and hydrogenation units. The use of solid or liquid wastes (as e. g. sewage sludge, used plastic materials, used ...

330 MWE power plant with pressurized fluidized bed combustion and combined cycle gas and steam turbine (Design Stage)

Das Projekt "330 MWE power plant with pressurized fluidized bed combustion and combined cycle gas and steam turbine (Design Stage)" wird vom Umweltbundesamt gefördert und von Dawid-Saar durchgeführt. Objective: To design a 330 MWe demonstration power plant with pressurised fluidised bed combustion and combined cycle of gas and steam turbine. General Information: The project involves the complete design of a demonstration power plant, characterized by: - the combination of a pressurized fluidised bed firing system with a steam generator directly connected, a multi-shaft gas turbine plant and waste heat utilisation systems arranged downstream and integrated into the steam circuit for an electric power output of a total of approximately 330 MW. - very compact construction by means of a high pressure stage (16 bar) and housing of particularly critical heat-exposed components such as firing system, dust separator etc. in a spherical pressure containment. In addition to the recognized advantages of the fluidised bed firing system, such as: - considerable improvement of the emission characteristics due to the binding of noxious matter to a large extent - especially of SO2 - by the addition of absorbent directly into the fluidised bed, - drastically reduced nitrogen oxide and carbon monoxide formation as a result of low combustion temperatures and controlled combustion reaction. Further considerable advantages can be expected because of the complete plant design conceived in this case compared with conventional technology due to: - a marked increase in the degree of conversion of primary energy into electrical energy as compared with the usual hard coal fired power station with flue gas desulphurization plants from previously 38,6 per cent to 41,2 per cent, related to plant net power. - a reduction of the investment costs by 10-15 per cent with a simultaneously considerably reduced space requirement, a fact which is due in particular to the absence of flue gas desulphurization. - a considerable expansion of the fuel spectrum to include qualities containing large amounts of inerts and noxious matters (i.e. especially sulphur). - simple construction for flexible separation of heat. - significantly more compact design than AFBC. The total cost of the design phase, represented by this project, amounts to DM 10 million for which a 40 per cent subsidy has been granted.

Pollution at coke works - measurement of polycyclic aromatic hydrocarbons (PAH) in the atmosphere within the environs and in the neighbourhood of coke works - Phase II

Das Projekt "Pollution at coke works - measurement of polycyclic aromatic hydrocarbons (PAH) in the atmosphere within the environs and in the neighbourhood of coke works - Phase II" wird vom Umweltbundesamt gefördert und von DMT-Gesellschaft für Forschung und Prüfung, Institut für Kokserzeugung und Kohlechemie durchgeführt. Objective: The main aims of the research project are to - harmonize the measuring procedures for conditions at the place of work and in the environment of coking plants - to find out more about the passage of PAH emissions from coking plants through the atmosphere and their effects. General Information: Polycyclic aromatic hydrocarbons (PAH) are formed in the pyrolysis of organic material, e.g. in the coking of hard coal. Although the major proportion of the PAH produced in the coking plant is separated out of the crude gas together with the tar, and then undergoes further treatment, a certain amount can still be emitted into the atmosphere and thus affect both the workers at the plant and the population living in the environment. This is particularly important since some PAH e.g. benzo(a)pyrene (BaP), are considered carcinogenic. To investigate the related questions, a joint research project was carried out and provided answers to several highly complex questions, e.g.: - harmonization of analysis methods - harmonization of sampling methods for measuring emissions - drawing up balance sheets for PAH in emissions, at places of work and in the environment - the implementation of new techniques e.g. LAMMA measuring procedure, mutagenesis tests. Other problems, some of which arose during the investigations, could not be solved satisfactorily for lack of either time or financial resources. In particular, it was not possible to harmonize the sampling methods of the three organisations for measurements at the place of work and in the environment of coking plants. Although this had no influence on the assessment of the results achieved in each Member State, it was impossible to compare these results where they had been obtained under conditions peculiar to coking in specific Member States i.e. different coal types, coking conditions, environmental protection facilities, oven design etc. The US Environmental Protection Agency's most recent decision to classify coking oven emissions as dangerous pollutants and the effects of this decision on legislation in Europe make this type of information increasingly important. It was therefore agreed to tackle the outstanding questions in a follow-up project.

6-MWth-Verbrennungsanlage 'Koenig Ludwig' mit atmosphaerischer Wirbelschicht

Das Projekt "6-MWth-Verbrennungsanlage 'Koenig Ludwig' mit atmosphaerischer Wirbelschicht" wird vom Umweltbundesamt gefördert und von Ruhrkohle AG durchgeführt. Objective: The objective of this Atmospheric Fluidized Bed Combustor (AFBC) project is fivefold: 1. To further develop and refine the AFBC technology for heat generation and system components 2. Expand the range of possible fuels used in AFBC to include residues from the 200 T/d coal liquefaction plant Bothrop and waste from refineries, petrochemical plants, tar and pitch processing and liquefaction plants. 3. Eliminate existing technical problems which diminish AFBC marketability. 4. Demonstrate the overall technical feasibility of AFBC's especially with regards to fuel flexibility (coke, low volatile, and raw coal). 5. Demonstrate the economic advantages of AFBC for heat generation. Assuming the demonstration plant replaces an oil fired heating scheme, it is estimated that energy savings will be 1,550 TOE/y. General Information: The Koenig Ludwig AFBC demonstration plant is a natural-circulation steam boiler with integrated fluidized bed combustion. The thermal capacity is 6 MW saturated steam at 17 Bar and 8. 85 T/h is generated to heat the recirculated district-heating water in a heat exchanger plant. Two completely separate conveyor systems are installed to charge fuel and limestone. One mechanical system feeds the fuel via screw conveyors from below into the fluidized bed; the other is a pneumatic system which charges the test fuels hard pitch and liquefaction residue, due to their low softening points, from above into the bed. Boiler ancillaries consist of a feed water treatment plant, flue gas cleanup plant (bag filters), and ash removal and disposal facilities. The demonstration was in four phases. The first two carried out under this contract being: Phase 1: Combustion tests were performed on various coal grades; primarily moisture-free middlings with volatile contents either in excess of 20 per cent roles than 10 per cent. A total of 103 single measurement series were done to examine coal grades with respect to burn-up rate, emissions, retention of noxious substances and the effect of fuel feed points. Phase 2: Combustion tests were performed on coke, hard pitch, and coal liquefaction residue to evaluate suitability for fluidized bed combustion and if emissions of hydrogen halides, sulphur dioxide, nitrogen oxides, polycyclic aromatic hydrocarbons, and trace elements were controllable. The project will cost an estimated DM 5,951 million. Achievements: Phase 1: Hard Coal Grades - Combustion efficiency was not significantly affected by coal grade at feed point location. In all cases, the carbon burn-up rate averaged 84-89 per cent, with peaks of + 93 per cent. - Optimum SO2 emission was obtained with nr 2 middlings, with a desulphurization level of + 95 per cent (CA/S = 4. 7 - 7. 9) at + 810 degree of Celsius. At an average NOx emission of + 600 mg/m3 in the main generating range, there are no significant differences between fuels. - Low volatile fuels were not found to be superior with respect to carbon monoxide emissions...

KlimPro: Entwicklung eines umweltfreundlichen Verfahrens zur Herstellung von Soda

Das Projekt "KlimPro: Entwicklung eines umweltfreundlichen Verfahrens zur Herstellung von Soda" wird vom Umweltbundesamt gefördert und von SChPrEngCo- Scientific Chemical Process Engineering Consultancy durchgeführt. Der zu entwickelnde CODA Prozess kann die Sodaindustrie in eine Kohlendioxid-Senke umwandeln und deutschlandweit ca. 1-2 Mio. Tonnen CO2 Emissionen pro Jahr durch CDA (Carbon Direct Avoidance) und CCU (Carbon Capture & Utilization) verringern. Kalzinierte Soda (Natriumcarbonat Na2CO3) ist eine Grundchemikalie und wird in Deutschland durch das Ammoniak-Soda Verfahren (Solvay Prozess) hergestellt, wobei große Mengen CO2 emittiert werden. Das konventionelle Verfahren benötigt Natriumchlorid und fossilen Kalkstein (CaCO3) als Ausgangsprodukte, sowie Ammoniak und fossilen Brennstoff (Koks bzw. Anthrazit) als Betriebsmittel. Zusätzlich werden große Mengen thermische und elektrische Energie für den Betrieb benötigt, welche hauptsächlich aus fossilen Brennstoffen (z.B. Erdgas) gewonnen werden. Im neuen CODA Prozess werden Soda-, Wasserstoff- und Chlor-Produkte aus Natriumchloridlösung (Sole), Kohlendioxid aus Luft und erneuerbarer elektrischer Energie hergestellt, wobei kein Ammoniak und kein fossiler Kalkstein wie im alten Solvay-Prozess benötigt wird. Zusätzlich können für die Sodaindustrie typische Abfallströme (z.B. Feststoffhalden und Chlorid-Abwasser mit Ammoniakspuren) weitgehend vermieden werden. Somit trägt der CODA Prozess zum globalen Klima- und lokalen Umweltschutz bei. Gesamtziel dieses Projektes ist die Entwicklung, der Aufbau, Betrieb und die Bewertung einer CODA Versuchsanlage (TRL5) in der Umgebung einer industriellen Sodaproduktionsanlage. Der neue CODA Prozess setzt sich dabei hauptsächlich aus den Teilprozessen Chlor-Alkali-Elektrolyse, Natriumhydroxid-CO2-Absorption (direkt aus Luft) und Soda-Kristallisation zusammen. Durch die Verwendung von erneuerbarer Energie wird kein CO2 emittiert, sondern aus der Luft oder Abgas aufgenommen. Das Projekt wird gemeinsam durch die Partner des Max-Planck-Instituts für Dynamik komplexer technischer Systeme, der Scientific Chemical Process Engineering Consultancy (SChPrEngCo) und der CIECH Soda Deutschland bearbeitet.

Demonstrationsanlage fuer die Braunkohlevergasung nach dem Hochtemperatur-Winkler-Verfahren (HTW) (Phase 1A)

Das Projekt "Demonstrationsanlage fuer die Braunkohlevergasung nach dem Hochtemperatur-Winkler-Verfahren (HTW) (Phase 1A)" wird vom Umweltbundesamt gefördert und von RWE Rheinbraun durchgeführt. Objective: Construction of a demonstration plant with a capacity of 1,500 T/D of raw brown coal using the Winkler process at high temperature (1,000 deg. C) and under pressure (10 Bar) and subsequent gas treatment units. L per cent General Information: The HTW process is a gasification process based on the fluidized bed technology developed by Fritz Winkler in 1922. Gasification in the advanced HTW process takes place under pressure at a temperature of up to 1000 deg. C, with oxygen and steam as gasifying agents. The High Temperature Winkler process features: - high mass and energy transfers with a smooth temperature distribution; - low consumption of gasifying agents; - high degree of carbon conversion since gasification takes place in the fluidized bed and in the entrained gasification zone; - suitability for a large variety of feedstocks (lignite, slightly caking hard coal, wood, peat, biomass); - large product range (synthesis gases, reducing gas, hydrogen, low -BTU gas); HTW demonstration plant data: Gasification pressure 10 Bar Gasification temperature approx. 950 deg. C Dry lignite input capacity 30. 5 t/h Synthesis gas output capacity 37000 m3/h Methanol equivalent14 t/h Dry lignite is transported by a belt conveyor from the Berrenrath refining plant to the storage bunker. From the weighing vessels the lignite passes through pressurized lock hoppers and reaches the feeding vessels from where it is supplied by dosing and feeding screws to the fluidized bed. In the gasifier, lignite reacts with oxygen and steam as gasifying agents at a pressure of 10 bar and temperatures of up to 1000 deg. C. Oxygen is fed into the gasifier at different levels. Temperatures in the fluidized bed range from 700 to 800 deg. C. In the entrained gasification zone above, carbon conversion and gas quality are further improved at temperatures reaching 1000 deg. C. The product gas leaves the gasifier at the top. Ash and carbon containing dust particles carried along by the raw gas are removed in a cyclone and recirculated to the fluidized bed. A second cyclone removes the remaining finer dust particles. The hot raw gas is cooled to some 350 deg. C in a waste heat boiler. The heat energy is used to generate medium pressure steam which serves as process steam in the gasifier. The remaining heat is used for saturating the raw gas with steam in a quench cooler. CO-shift conversion is used to obtain the required ratio of hydrogen to carbon monoxide. Subsequently, sulphur compounds and carbon dioxide are almost completely removed in a Rectisol scrubber with methanol acting as a solvent. The sulphur compounds are processed into saleable elementary sulphur. The processed and cleaned synthesis gas is piped to the Union Kraftstoff AG where tests are made on the conversion of lignite derived synthesis gas into methanol. One important future field of application for the HTW process is constituted by low-BTU gas production from lignite for use in combined-cycle power stations.

1 2 3 4