API src

Found 108 results.

Related terms

Teil 3

Das Projekt "Teil 3" wird vom Umweltbundesamt gefördert und von Hochschule Offenburg, Fakultät Maschinenbau und Verfahrenstechnik, Labor Mess- und Regelungstechnik durchgeführt. Die Einbindung von Mini- und Mikro-BHKW in ein virtuelles Kleinkraftwerk (VKK) bietet vielfältige wirtschaftliche, Smart-Grids- und Klimaschutzpotentiale zur Unterstützung der 'Wärmewende'. Eine Einbindung solcher Anlagen ist bisher jedoch mit zumeist hohen Kosten verbunden, weshalb i.d.R. nur Anlagen in höheren Leistungsklassen (größer als 500 kWel) umgesetzt werden. Im Rahmen des Projekts mikroVKK wurde deshalb das Ziel verfolgt zu demonstriert und nachzuweisen, dass auch BHKW-Anlagen unter 100 kWel in ein virtuelles Kleinkraftwerk (VKK) wirtschaftlich einzubinden sind. GridSystronic Energy (GSE) hat hierfür ein spezielles VKK-System (gs.system) entwickelt, welches im Rahmen des Projekts unter realen Bedingungen erprobt, weiterentwickelt und möglichst zur Marktreife gebracht wurde. Durch die Konfiguration des Systems - d.h. einfache Steuerboxen (gs.box) werden als Gateway für die Kommunikation vor Ort zur Anlagen- und Zähleranbindung verbaut, wohingegen die Berechnungen, Simulationen und Optimierung der Steuersignale auf dem zentralen gs.server erfolgt - lässt sich eine kostengünstige und skalierbare Lösung darstellen. Zusammen mit zehn Stadtwerken als Praxispartner wurden unterschiedliche BHKW- Standorte identifiziert und auf deren technische Eignung und die Umsetzbarkeit neuer Geschäftsmodelle auf Basis einer intelligenten Steuerung analysiert. Für ausgewählte Objekte, wie z.B. Schulen, Wärmenetze, Mehrfamiliengebäude, wurde durch GSE eine Anbindung der für die Regelung notwendigen Geräte und Zähler realisiert. Regelwerke, wie z.B. 'Lastprofil folgen', als Basis für neue Geschäftsmodelle wurden mit den Praxispartnern abgestimmt und entwickelt. Anhand der Erkenntnisse zu den Effekten der intelligenten Steuerung (z.B. Nutzung von möglichen Flexibilitäten, Stabilität des Systems, Verschiebung der Betriebszeiten, Änderung der Lieferquoten etc.) wurden neue Geschäftsmodelle detailliert analysiert und mit den Praxispartnern prototypisch umgesetzt. Die Evaluation zu den Smart-Grids-Potenzialen (Flexibilität, netzdienliche Einspeisung etc.) sowie die Potenziale zur Unterstützung des Klimaschutzes (CO2-Minderung) erfolgte anhand von gemessenen und simulierten Werten. Während der Projektlaufzeit konnte die technische Anbindbarkeit von BHKW-Anlagen mit einer elektrischen Leistung bis 100 kWel demonstriert werden. Die Vorarbeiten für die Erarbeitung einer standardisierten und kostengünstigen Anbindungslösung war jedoch sehr viel zeitintensiver als ursprünglich geplant, weshalb die Anlagen verspätet oder z.T. gar nicht angebunden werden konnten. Wegen der geringen Datenbasis konnten die grundsätzlichen wirtschaftlichen Potenziale einer VKK Steuerung deshalb nur auf theoretischer Basis nachgewiesen werden. Die Anbindungs- und Integrationskosten hängen stark von den örtlichen Gegebenheiten ab, weshalb es hierfür keine pauschale Aussage getroffen werden kann. (Text gekürzt)

Teil 2

Das Projekt "Teil 2" wird vom Umweltbundesamt gefördert und von Schäffler sinnogy durchgeführt. Die Einbindung von Mini- und Mikro-BHKW in ein virtuelles Kleinkraftwerk (VKK) bietet vielfältige wirtschaftliche, Smart-Grids- und Klimaschutzpotentiale zur Unterstützung der 'Wärmewende'. Eine Einbindung solcher Anlagen ist bisher jedoch mit zumeist hohen Kosten verbunden, weshalb i.d.R. nur Anlagen in höheren Leistungsklassen (größer als 500 kWel) umgesetzt werden. Im Rahmen des Projekts mikroVKK wurde deshalb das Ziel verfolgt zu demonstriert und nachzuweisen, dass auch BHKW-Anlagen unter 100 kWel in ein virtuelles Kleinkraftwerk (VKK) wirtschaftlich einzubinden sind. GridSystronic Energy (GSE) hat hierfür ein spezielles VKK-System (gs.system) entwickelt, welches im Rahmen des Projekts unter realen Bedingungen erprobt, weiterentwickelt und möglichst zur Marktreife gebracht wurde. Durch die Konfiguration des Systems - d.h. einfache Steuerboxen (gs.box) werden als Gateway für die Kommunikation vor Ort zur Anlagen- und Zähleranbindung verbaut, wohingegen die Berechnungen, Simulationen und Optimierung der Steuersignale auf dem zentralen gs.server erfolgt - lässt sich eine kostengünstige und skalierbare Lösung darstellen. Zusammen mit zehn Stadtwerken als Praxispartner wurden unterschiedliche BHKW- Standorte identifiziert und auf deren technische Eignung und die Umsetzbarkeit neuer Geschäftsmodelle auf Basis einer intelligenten Steuerung analysiert. Für ausgewählte Objekte, wie z.B. Schulen, Wärmenetze, Mehrfamiliengebäude, wurde durch GSE eine Anbindung der für die Regelung notwendigen Geräte und Zähler realisiert. Regelwerke, wie z.B. 'Lastprofil folgen', als Basis für neue Geschäftsmodelle wurden mit den Praxispartnern abgestimmt und entwickelt. Anhand der Erkenntnisse zu den Effekten der intelligenten Steuerung (z.B. Nutzung von möglichen Flexibilitäten, Stabilität des Systems, Verschiebung der Betriebszeiten, Änderung der Lieferquoten etc.) wurden neue Geschäftsmodelle detailliert analysiert und mit den Praxispartnern prototypisch umgesetzt. Die Evaluation zu den Smart-Grids-Potenzialen (Flexibilität, netzdienliche Einspeisung etc.) sowie die Potenziale zur Unterstützung des Klimaschutzes (CO2-Minderung) erfolgte anhand von gemessenen und simulierten Werten. Während der Projektlaufzeit konnte die technische Anbindbarkeit von BHKW-Anlagen mit einer elektrischen Leistung bis 100 kWel demonstriert werden. Die Vorarbeiten für die Erarbeitung einer standardisierten und kostengünstigen Anbindungslösung war jedoch sehr viel zeitintensiver als ursprünglich geplant, weshalb die Anlagen verspätet oder z.T. gar nicht angebunden werden konnten. Wegen der geringen Datenbasis konnten die grundsätzlichen wirtschaftlichen Potenziale einer VKK Steuerung deshalb nur auf theoretischer Basis nachgewiesen werden. Die Anbindungs- und Integrationskosten hängen stark von den örtlichen Gegebenheiten ab, weshalb es hierfür keine pauschale Aussage getroffen werden kann. (Text gekürzt)

Teil 1

Das Projekt "Teil 1" wird vom Umweltbundesamt gefördert und von GridSystronic Energy GmbH durchgeführt. Die Einbindung von Mini- und Mikro-BHKW in ein virtuelles Kleinkraftwerk (VKK) bietet vielfältige wirtschaftliche, Smart-Grids- und Klimaschutzpotentiale zur Unterstützung der 'Wärmewende'. Eine Einbindung solcher Anlagen ist bisher jedoch mit zumeist hohen Kosten verbunden, weshalb i.d.R. nur Anlagen in höheren Leistungsklassen (größer als 500 kWel) umgesetzt werden. Im Rahmen des Projekts mikroVKK wurde deshalb das Ziel verfolgt zu demonstriert und nachzuweisen, dass auch BHKW-Anlagen unter 100 kWel in ein virtuelles Kleinkraftwerk (VKK) wirtschaftlich einzubinden sind. GridSystronic Energy (GSE) hat hierfür ein spezielles VKK-System (gs.system) entwickelt, welches im Rahmen des Projekts unter realen Bedingungen erprobt, weiterentwickelt und möglichst zur Marktreife gebracht wurde. Durch die Konfiguration des Systems - d.h. einfache Steuerboxen (gs.box) werden als Gateway für die Kommunikation vor Ort zur Anlagen- und Zähleranbindung verbaut, wohingegen die Berechnungen, Simulationen und Optimierung der Steuersignale auf dem zentralen gs.server erfolgt - lässt sich eine kostengünstige und skalierbare Lösung darstellen. Zusammen mit zehn Stadtwerken als Praxispartner wurden unterschiedliche BHKW- Standorte identifiziert und auf deren technische Eignung und die Umsetzbarkeit neuer Geschäftsmodelle auf Basis einer intelligenten Steuerung analysiert. Für ausgewählte Objekte, wie z.B. Schulen, Wärmenetze, Mehrfamiliengebäude, wurde durch GSE eine Anbindung der für die Regelung notwendigen Geräte und Zähler realisiert. Regelwerke, wie z.B. 'Lastprofil folgen', als Basis für neue Geschäftsmodelle wurden mit den Praxispartnern abgestimmt und entwickelt. Anhand der Erkenntnisse zu den Effekten der intelligenten Steuerung (z.B. Nutzung von möglichen Flexibilitäten, Stabilität des Systems, Verschiebung der Betriebszeiten, Änderung der Lieferquoten etc.) wurden neue Geschäftsmodelle detailliert analysiert und mit den Praxispartnern prototypisch umgesetzt. Die Evaluation zu den Smart-Grids-Potenzialen (Flexibilität, netzdienliche Einspeisung etc.) sowie die Potenziale zur Unterstützung des Klimaschutzes (CO2-Minderung) erfolgte anhand von gemessenen und simulierten Werten. Während der Projektlaufzeit konnte die technische Anbindbarkeit von BHKW-Anlagen mit einer elektrischen Leistung bis 100 kWel demonstriert werden. Die Vorarbeiten für die Erarbeitung einer standardisierten und kostengünstigen Anbindungslösung war jedoch sehr viel zeitintensiver als ursprünglich geplant, weshalb die Anlagen verspätet oder z.T. gar nicht angebunden werden konnten. Wegen der geringen Datenbasis konnten die grundsätzlichen wirtschaftlichen Potenziale einer VKK Steuerung deshalb nur auf theoretischer Basis nachgewiesen werden. Die Anbindungs- und Integrationskosten hängen stark von den örtlichen Gegebenheiten ab, weshalb es hierfür keine pauschale Aussage getroffen werden kann. (Text gekürzt)

Erprobung eines 10 kW-BHKW mit Stirling-Motor

Das Projekt "Erprobung eines 10 kW-BHKW mit Stirling-Motor" wird vom Umweltbundesamt gefördert und von Thyssengas GmbH durchgeführt. Das Klein-BHKW der Firma SOLO Kleinmotoren GmbH wird einem Langzeittest unterzogen. Die Ergebnisse sollen den Entwicklungsstand und die Zuverlaessigkeit des Aggregats aufzeigen.

Teilprojekt D

Das Projekt "Teilprojekt D" wird vom Umweltbundesamt gefördert und von Umwelt- und Ingenieurtechnik GmbH Dresden durchgeführt.

VP4/ EVerBio - Teilprojekt A

Das Projekt "VP4/ EVerBio - Teilprojekt A" wird vom Umweltbundesamt gefördert und von DBFZ Deutsches Biomasseforschungszentrum gemeinnützige GmbH durchgeführt. Es wird die energetische Verwertung von Reststoffströmen der Biomasseaufschlussverfahren untersucht: a) in TP 4.0.2 feste ligninhaltige Reststoffströme in thermo-chemischer Konversion (Verbrennung) b) in TP 4.0.3 flüssige und pastöse Reststoffe in biochemischer Konversion zu Biomethan im Biogasprozess TP 4.0.2 beginnt mit der Charakterisierung der Brennstoffeigenschaften der relevanten Reststoffe. Es folgt Systemanalyse zur Prüfung des technischen Einsatzgebietes (Co-Feuerung im Großkraftwerk, Einsatz in Kleinkraftwerken). Dann finden Untersuchungen zur Brennstoffaufbereitung und daran anschließend Verbrennungsuntersuchungen statt. Die gewonnenen Daten dienen der Modellierung der Konversionsverfahren, um die untersuchten Prozessketten bewerten zu können. Dies erfolgt abschließend unter ökonomischen und ökologischen Aspekten. Während der gesamten Projektlaufzeit findet Rückkopplung und Austausch mit den Reststofferzeugern statt, um Optionen der Einsatzstoffoptimierung hinsichtlich der Energieausbeutemaximierung zu prüfen.TP 4.0.3 startet mit der Charakterisierung und Bewertung der Substrate. Darauf basierend wird ein geeignetes Verfahren für die anaerobe Vergärung entwickelt. Anschließend findet die energetische und ökonomische Modellierung für den großtechnischen Einsatz statt. Begleitend findet Rückkopplung und Austausch mit den Reststofferzeugern statt, um Optionen der Einsatzstoffoptimierung hinsichtlich der Energieausbeutemaximierung zu prüfen.

VP: 4/4EVerBio - Teilprojekt B

Das Projekt "VP: 4/4EVerBio - Teilprojekt B" wird vom Umweltbundesamt gefördert und von Vattenfall Europe New Energy GmbH durchgeführt. Es wird die energetische Verwertung von Reststoffströmen der Biomasseaufschlussverfahren untersucht: a) in TP 4.0.2 feste ligninhaltige Reststoffströme in thermo-chemischer Konversion (Verbrennung)b) in TP 4.0.3 flüssige und pastöse Reststoffe in biochemischer Konversion zu Biomethan im Biogasprozess TP 4.0.2 beginnt mit der Charakterisierung der Brennstoffeigenschaften der relevanten Reststoffe. Es folgt Systemanalyse zur Prüfung des technischen Einsatzgebietes (Co-Feuerung im Großkraftwerk, Einsatz in Kleinkraftwerken). Dann finden Untersuchungen zur Brennstoffaufbereitung und daran anschließend Verbrennungsuntersuchungen statt. Die gewonnenen Daten dienen der Modellierung der Konversionsverfahren, um die untersuchten Prozessketten bewerten zu können. Dies erfolgt abschließend unter ökonomischen und ökologischen Aspekten. Während der gesamten Projektlaufzeit findet Rückkopplung und Austausch mit den Reststofferzeugern statt, um Optionen der Einsatzstoffoptimierung hinsichtlich der Energieausbeutemaximierung zu prüfen.TP 4.0.3 startet mit der Charakterisierung und Bewertung der Substrate. Darauf basierend wird ein geeignetes Verfahren für die anaerobe Vergärung entwickelt. Anschließend findet die energetische und ökonomische Modellierung für den großtechnischen Einsatz statt. Begleitend findet Rückkopplung und Austausch mit den Reststofferzeugern statt, um Optionen der Einsatzstoffoptimierung hinsichtlich der Energieausbeutemaximierung zu prüfen.

CEC-Studie zur Durchsetzung der Windenergie

Das Projekt "CEC-Studie zur Durchsetzung der Windenergie" wird vom Umweltbundesamt gefördert und von Consulectra Unternehmensberatung GmbH durchgeführt. General Information: the present study offers a better insight into the economical and technical problems arising with increasing wind penetration into an electricity system. The simulation models developed here have made it possible to depict a sequence of scenari with different parameters. The influence of the internal rate of return, the future price development on the world coal market (it has been assumed here that wind energy will replace generating by coal-fired power plants), the influence of wind potential and operation and maintenance costs have been analysed. To calculate the cost-benefit ratio within different scenari, the capacity credit of wind turbines (ratio of safe capacity share to installed capacity) has also been computed on a special model. The justified expenditure for 3 mw and 250 kw wind turbines in wind classes 1 and 2 for 2 different world coal price scenari are shown depending on the internal rate of return. This justified expenditure can be directly compared with estimates from the wind turbine manufacturers, inasmuch as these include all investment costs per kw up to the transformer station. Achievements: Electrical power production in west Germany shows a small risk in relation to the safety of the fuel supply; about 90 per cent of the total generation is produced by nuclear energy, lignite, indigenous coal and water. Before investigating more closely wind energy in West Germany, 2 aspects are being kept in mind: the small growth rate of electricity consumption and accordingly a comparatively small power plant construction programme up to the year 2000 and, with reference to environmental problems, the increasing concentration of carbon dioxide in the air generated by all conventional steam power stations.

CO2-Methanisierung aus dem Rauchgas

Das Projekt "CO2-Methanisierung aus dem Rauchgas" wird vom Umweltbundesamt gefördert und von Panta Rhei gemeinnützige Gesellschaft mbH durchgeführt. Das hier beantragte Projekt stellt einen neuen Ansatz in der Entwicklung von Strategien zur CO2-Emissionsreduzierung dar. Das Vorhaben zielt auf die chemische Wandlung von CO2 direkt aus dem Rauchgas-Strom eines Kohlekraftwerkes. die zentrale Aufgabe ist die Reduzierung der CO2-Emissionen ohne dass dazu Eingriffe in den Kraftwerksbetrieb erforderlich sind. Beantragt werden grundsätzliche Untersuchungen zum Betrieb einer Technikums-Anlage, in welcher durch die Sabatier-Reaktion CO2-Anteile aus dem Rauchgas-Strom direkt in Methan umgewandelt werden. Dadurch wird ein geschlossener Kohlenstoffkreislauf etabliert. In der Projektlaufzeit sollen zunächst die erforderlichen Einsatzbedingungen im Labor simuliert und die Auswahl der Katalysatoren unterstützt werden. Im weiteren Verlauf soll eine mobile Technikums-Anlage für den Einsatz an kleineren Kraftwerken entwickelt und gebaut werden. Die Technikums-Anlage wird zunächst im Einzelbetrieb mit synthetischen Gasgemischen betrieben. Anschließend soll die Technikums-Anlage für den Anschluss an ein kleines Heizkraftwerk ausgebaut werden. Der 3monatige Testbetrieb am HKW wird begleitet, Anpassungsänderungen werden durchgeführt.

Teilprojekt B

Das Projekt "Teilprojekt B" wird vom Umweltbundesamt gefördert und von G.M.F. Gesellschaft für Meß- und Filtertechnik m.b.H. durchgeführt. Vorhabensziel: Anpassung der europäischen Umweltverträglichkeitsprüfung an die Erfordernisse der chinesischen Genehmigungsverfahren. Durchführung einer angepassten Umweltverträglichkeitsprüfung mit der Möglichkeit der Erweiterung auf eine Kaskade von Kleinwasserkraftwerken für einen geplanten Standort. Siehe Projektantrag des Gesamtverbundprojektes Arbeitspakete 1, 11, 13, 14.

1 2 3 4 59 10 11