API src

Found 614 results.

Teil 1

Das Projekt "Teil 1" wird vom Umweltbundesamt gefördert und von Fraunhofer-Institut für Solare Energiesysteme durchgeführt. Für die projektnachgelagerte Errichtung einer Demonstrationsanlage zur direkten solaren Wasserstofferzeugung (Verbindung einer betriebseigenen Photovoltaik mit Elektrolyse via einer direkten DC-DC-Koppelung) - im MW-Maßstab soll die technische und wirtschaftliche Machbarkeit validiert werden und die Grobplanung durchgeführt werden. Die wesentlichen Schritte bzw. zu adressierenden Fragestellungen sind: - Test und Optimierung der elektrotechnischen Koppelung durch einen DC-DC-Steller - Bewertung des Einflusses des direkt gekoppelten Betriebs auf die Lebensdauer des Elektrolyseurs - Konzeption und Optimierung der elektrischen Anlagentopologie - Anpassung der Photovoltaik-Anlagen-Konfiguration auf die Wasserstofferzeugung - Validierung eines wirtschaftlichen Geschäftsmodells - Konzeption und Optimierung einer konkreten Anlage Ergebnis ist die Grobplanung der Anlage, d.h. das Feststehen eines validierten Geschäftsmodells, eines als machbar eingestuften und in Teilen getesteten technischen Verfahrens inklusive Festlegung und Spezifizierung der Hauptkomponenten einer Anlage zur Wasserstoff-Erzeugung im MW-Maßstab, das eine betriebseigene PV-Anlage über eine direkte DC-DC-Kopplung mit einem Elektrolyseur kombiniert. Dieses Ergebnis bildet die Basis für eine konkrete H2-Erzeugungsanlage, die im Anschluss an das Förderprojekt realisiert werden soll.

Part 2

Das Projekt "Part 2" wird vom Umweltbundesamt gefördert und von ALSTOM Boiler Deutschland GmbH durchgeführt. Ziel des Vorhabens ist es. mittels einer Testschleife das Betriebs- und Versagensverhalten von Werkstoffen, Bauteilen und Armaturen bei hohen Temperaturen unter Einwirkung von mechanischen Lasten und korrosiven Medien zu erforschen und für den technischen Einsatz unter diesen Bedingungen zu qualifizieren. Damit können Wirkungsgradsteigerungen und die Erhöhung der Ressourceneffizienz bei Dampfkraftwerken erreicht werden. Aufgrund der komplexen Beanspruchung aus Druck, hoher Temperatur und aggressivem Medium ergeben sich extreme Anforderungen an die eingesetzten Werkstoffe. Im Rahmen des Projekts werden wissenschaftliche Erkenntnisse über Korrosions- und Oxidationsverhalten, langzeitige Druck- und Temperaturbelastungen, Mikrostrukturänderungen und Schädigungsmechanismen gewonnen, um zukünftig einen störungsfreien Betrieb und gleichzeitig einen so gering wie möglichen Aufwand bei Stillständen und Inspektionen in hocheffizienten Kraftwerken sicherzustellen. Zudem werden die Erkenntnisse in Form von Daten und Gesetzmäßigkeiten hinsichtlich metallkundlicher und werkstofftechnischer Beschreibungen von Schädigungsmechanismen ausgearbeitet und Beurteilungskriterien zusammengestellt. Das Arbeitsprogramm ist als Fortsetzung und Vertiefung des gleichnamigen Vorgängerprojekts mit folgenden Schwerpunkten anzusehen: - Wichtige Erkenntnisse zum (Schädigungs-) Verhalten von neuen Werkstoffen und deren Schweißverbindungen für hocheffiziente Kraftwerke unter tatsächlichen Kraftwerksbedingungen - Wichtige Erkenntnisse zum (Schädigungs-) Verhalten von neuen Werkstoffen unter nicht bestimmungsgemäßen Beanspruchungen (Störfall) - Erkenntnisse über das Oxidations- und Korrosionsverhalten der eingesetzten Werkstoffe - Erstellung von Auslegungskonzepten und Entwicklung von optimierten Berechnungsverfahren - Adäquate Beurteilung der Lebensdauer und der Werkstoffe für einen sicheren und ökonomischen Betrieb - Neue Erkenntnisse über mögliche Wärmebehandlungen von Ni-Basislegierungen unter realen Bedingungen - Überprüfung des konzipierten Überwachungskonzeptes - Betriebsverhalten und Zuverlässigkeit der eingesetzten Regelungs- und Absperrarmaturen

Machbarkeitsstudie (FSP-biob. Kunststoffe): Polylactid (PLA) als High-Tech-Werkstoff für optische Bauteile einer Leuchte

Das Projekt "Machbarkeitsstudie (FSP-biob. Kunststoffe): Polylactid (PLA) als High-Tech-Werkstoff für optische Bauteile einer Leuchte" wird vom Umweltbundesamt gefördert und von Hochschule Hamm-Lippstadt, Lehrgebiet Photonik und Materialwissenschaften durchgeführt. LEDs als Leuchtmittel werden im Durchschnitt die jeweilige Leuchte in Ihrer Lebensdauer übertreffen. Insofern sind Materialien gefordert, die sich leicht wiederverwerten lassen, oder deren Entsorgung unproblematisch ist. Interessant sind auch Lösungen, die den Wechsel der Leuchte, bei Erhalt des Leuchtmittels ermöglichen. So würde gewährleistet, dass die hohe Lebensdauer der Lichtquelle nicht dazu führt, dass das Design der Leuchten nach längerem Gebrauch unzeitgemäß wirkt, und diese Gefahr laufen in technisch einwandfreiem Zustand entsorgt zu werden. Ein Werkstoff, der praktisch alle Eigenschaften für eine derartige Anwendung erfüllen kann, ist der Polyester Polymilchsäure oder Polylactid (PLA). Ziel des Vorhabens ist daher, sämtliche Teile einer Leuchte (abgesehen vom Schalter, elektrischen Leitungen und LED) aus PLA zu fertigen. Während für die Fertigung von Gehäuse und Leuchtenarm aus PLA keine Schwierigkeiten erwartet werden, sind für die Fertigung der optischen, d.h. transparenten bzw. hochreflektierenden, Bauteile aus PLA noch technische Fragen zu lösen. Diese betreffen vor allem die Kristallisation und die Erweichung des Materials im Bereich der Glasübergangstemperatur (55-65 Grad Celsius), die unterdrückt werden sollen. Die dazu gegebenenfalls erforderlichen Additive sollen so weit wie möglich nicht zu Lasten der Nachhaltigkeit des Materials gehen, und demnach bevorzugt Naturstoffe oder biologisch abbaubare Substanzen sein.

Entwicklung langzeitstabiler HT-PEM MEA´s und Stacks zur Realisierung eines modularen BHKW (CISTEM)

Das Projekt "Entwicklung langzeitstabiler HT-PEM MEA´s und Stacks zur Realisierung eines modularen BHKW (CISTEM)" wird vom Umweltbundesamt gefördert und von NEXT ENERGY, EWE-Forschungszentrum für Energietechnologie e.V. durchgeführt. Projektbeschreibung: Eine solide Bereitstellung von Strom und Wärme im Haushaltsbereich ist eines der Hauptanliegen der Energieversorgung auf europäischer Ebene. Der zunehmende Anteil elektrischer Energie aus erneuerbaren Energiequellen wie Wind- und Sonnenenergie führt dazu, dass sich Energie-Angebot und -Nachfrage zum Teil nicht decken. Da der Marktanteil an Raumwärme und häuslicher elektrischer Energie an der gesamten Energieversorgung sehr bedeutsam ist, könnte mit einer neuen Technologie, die Energie sowohl effizient erzeugen als auch speichern kann, die Stabilität des europäischen Energienetzes erheblich verbessert werden. Die zentrale Idee des Projektes CISTEM ist, die Hochtemperatur-Polymerelektrolytmembran-Brennstoffzellentechnologie für Blockheizkraftwerke (BHKW) nutzbar zu machen. Dies erfordert die Entwicklung einer neuen Brennstoffzellentechnologie für die speziellen Anforderungen des BHKW in Bezug auf Effizienz, Kosten und Lebensdauer. Gleichzeitig können bei der Entwicklung des BHKW-Systems die speziellen Vor- und Nachteile der Brennstoffzellentechnologie so berücksichtigt werden, dass ein optimales Systemdesign entsteht. Das Brennstoffzellen-BHKW soll Wärme und Strom für größere Gebäude bzw. kleine Siedlungen erzeugen. Projektziele: Innerhalb von CISTEM wird die Hochtemperatur-Polymerelektrolytmembran-Brennstoffzellentechnologie (HT-PEM) für die Anwendung in BHKW weiterentwickelt. Dazu soll ein BHKW-System mit einer Leistung von bis zu 100 kWel entworfen werden, das modular aus Brennstoffzelleneinheiten mit je 5 kWel besteht. Parallel dazu wird die HT-PEM Technologie weiterentwickelt, um die Lebensdauer- und Leistungsanforderungen zu erfüllen. Der modulare Aufbau mit flexibler Anzahl an Brennstoffzelleneinheiten ermöglicht eine optimale Anpassung des BHKW-Systems an den Wärme- und Strombedarf von Gebäuden bzw. Siedlungen in unterschiedlichen Größenordnungen. Das BHKW-System wird zudem so ausgelegt, dass es sowohl mit Wasserstoff als auch mit Erdgas betrieben werden kann. Überschüssige elektrische Energie aus Windkraft, die nicht in das Netz eingespeist werden kann, könnte beispielsweise für die Elektrolyse von Wasserstoff und Sauerstoff verwendet werden, um beide zunächst zu speichern und zu einem späteren Zeitpunkt im KWK-System bedarfsgerecht zu nutzen. Damit ließe sich durch das Brennstoffzellen-BHKW eine Speicherwirkung elektrischer Energie erzielen. Das HT-PEM-System soll eine Verbesserung des elektrischen Wirkungsgrads der Membrane Electrode Assembly (MEA) von mehr als 20 % im Vergleich zu aktuell erhältlichen HT-PEM-Systemen erreichen. Der elektrische Gesamt-Wirkungsgrad soll bei mindestens 45 % liegen. In Kombination mit der Wärmenutzung wird damit ein elektrisch-thermischer Gesamtwirkungsgrad von mehr als 95 % erreicht.

Teilprojekt: Einsatz der ZfP

Das Projekt "Teilprojekt: Einsatz der ZfP" wird vom Umweltbundesamt gefördert und von Universität des Saarlandes, Fachrichtung 8.4 Materialwissenschaft und Werkstofftechnik, Professur für Zerstörungsfreie Materialprüfung und Qualitätssicherung durchgeführt. Ziel des Vorhabens ist die Entwicklung einer Verfahrensweise zur Bewertung der Resteinsatzdauer von im Betrieb gealterten metallischen Komponenten in Kernkraftwerken. Dabei wird berücksichtigt, dass sich bei Bauteilen die örtlichen Werkstoffeigenschaften aufgrund der im Betrieb auftretenden mechanischen und thermischen Beanspruchungen deutlich verändern können, insbesondere wenn Korrosionseinflüsse hinzukommen. Mit Hilfe der erstellten Analysewerkzeuge können die Fragen bezüglich Lebensdauer und Integrität im Hinblick auf örtliche und anlagenspezifische Belange umfassender beantwortet werden. Im Teilantrag des LZfPQ sollen Verfahren der ZfP zur Charakterisierung des Werkstoffs, sowie zur Schädigungsentwicklung unter einsatztypischen Beanspruchungen bereitgestellt und in die Prüfanordnungen (WPT, MPA) integriert werden. Hierauf aufbauend wird PHYBAL erweitert und so für komplexe Bauteile zugänglich gemacht. B1 dient dem Werkstoffverständnis und der daraus formulierten Verfahrensweise für gealterte metallische Strukturen der Kernenergie. Dazu werden X6CrNiNb1810 Proben künstlich gealtert und mittels elektrischer, elektromagnetischer und -chemischer Verfahren im Ausgangszustand und unter bzw. nach zyklischer Beanspruchung charakterisiert. Die elektrochemischen Verfahren ermöglichen hierbei die Detektion von ermüdungsbedingten mikrostrukturellen Oberflächenveränderungen. Diese Messdaten werden mit vorliegenden Werkstoffdaten fusioniert und als Datenbasis für die Erweiterungen von PHYBAL genutzt. Hierbei soll zudem eine Verbindung zu bestehenden Lebensdauerberechnungsverfahren hergestellt werden. Zur Verifizierung des Verfahrens an Bauteilen wird dieses in B2 an Kerbproben validiert. Dabei stehen die in B1 analysierte und auf der Werkstoffmikrostruktur basierte Werkstoffantwort und deren Übertragbarkeit auf komplexe Geometrien im Mittelpunkt. Ziel ist die Erweiterung von PHYBAL auf Medieneinflüsse, so dass dies in numerische Simulationsverfahren übertragen werden kann.

Teilprojekt 1

Das Projekt "Teilprojekt 1" wird vom Umweltbundesamt gefördert und von MARTIN Membrane Systems AG durchgeführt. Ziel des Projektes REMEMBER ist die Entwicklung einer neuartigen Dielektrophorese(DEP)-Membran zur Reduzierung von Fouling- und Scaling-Effekten während des Filterprozesses. Dazu sollen keramische oder polymere Membranoberflächen mittels Printingverfahren mit dünnen Leiterbahnen und Elektroden ausgestattet und anschließend durch einen innovativen Prozess mit einer Titanoxid-Beschichtung als Schutzschicht und Dielektrikum versehen werden. Zur Verbesserung der Membraneigenschaften soll weiterhin eine lokale Behandlung der funktionalisierten Membranoberfläche mittels Laser erfolgen. Alle Verfahren sollen inline unter Atmosphärendruck anwendbar sein, um dadurch kostengünstige Filter mit einer erhöhten Effizienz und Lebensdauer herstellen zu können. Die Funktionsweise der auf diesen innovativen Membranen basierenden Filtermodule wird zudem im Rahmen von praxisnahen Versuchen getestet. MMS wird in AP 1 Anforderungen an das Membranmaterial definieren und entsprechende Materialien aussuchen. In AP 2 untersucht MMS Methoden zur Kontaktierung der aufgetragenen DEP-Beschichtung und entwickelt entsprechende Werkzeuge. In AP 4 Fertigt die MMS Labormodule und führt entsprechende Labortests durch. In AP 5 arbeitet MMS an der Modellierung der Membranfiltration mit DEP mit. In AP 6 plant und baut MMS eine Pilotanlage und betreibt diese.

Schwerpunkt: Böden

Das Projekt "Schwerpunkt: Böden" wird vom Umweltbundesamt gefördert und von Leibniz Universität Hannover, Institut für Geotechnik (IGtH) durchgeführt. Ziel des Gesamtvorhabens ist es bestehende und zukünftige Wärmenetze für die steigenden Anforderungen, die durch den Umbau der Energieerzeugung zu einem höheren Anteil erneuerbarer Energien sowie damit verbundenen größeren Flexibilität in der Wärmeerzeugung entstehen, zu qualifizieren. Ziel des durch das Institut für Geotechnik der LUH zu bearbeitenden Arbeitspaketes 4 ist die Untersuchung des Verhaltens von Böden unter Wechselbeanspruchung und kombinierter Belastung. Aufgrund der wechselnden Betriebstemperaturen verschieben sich Fernwärmeleitungen im Boden hin und her. Es soll ein Berechnungsmodell erstellt werden, zweckmäßiger Weise ein auf Federn gebetteter Balken, mit welchem die temperatur- und vorbelastungsabhängigen Verschiebungen und Beanspruchungen berechnet werden können, um so auf Ermüdungslasten zu schließen und die Lebensdauer einer Fernwärmeleitung zu bewerten. Die Schwierigkeit in der Modellbildung liegt dabei in der Definition der Eigenschaften der Axial- und Lateralfedern. Bzgl. des durch das Institut für Geotechnik der LUH zu bearbeitenden Arbeitspaketes 4 ist folgende Arbeitsplanung vorgesehen: Das o.g. Berechnungsmodell soll anhand der vorliegenden Erkenntnisse zur Größe von Reibungs- und Bettungskräften entwickelt und numerisch realisiert werden. Dafür gilt es, die Federcharakteristiken abhängig von den Leitungsparametern verschiebungs-, temperatur- und zyklenabhängig zu definieren. Hierzu sind zum einen die vorhandenen Erkenntnisse zielgerichtet auszuwerten und zum anderen auch weitergehende Untersuchungen durchzuführen. Die Aufgaben sind in drei Arbeitsschritte untergliedert: In AP4.1 sollen aus numerischen Simulationen Federkennlinien für Axial- und Lateralfedern abgeleitet werden. In AP4.2 soll das in einer Basisversion bereits bestehende numerische Modell weiterentwickelt und validiert werden. In AP4.3 sollen Modellberechnungen durchgeführt werden für fiktive Beispiele wie auch für im Forschungsvorhaben konkret untersuchte Leitungsnetze.

IBÖ-02: Bio-basierte Elektrolyten und Elektroden für Redox-Flow-Batterien

Das Projekt "IBÖ-02: Bio-basierte Elektrolyten und Elektroden für Redox-Flow-Batterien" wird vom Umweltbundesamt gefördert und von DECHEMA Forschungsinstitut Stiftung bürgerlichen Rechts durchgeführt. Das in diesem Projekt angestrebte Produkt ist eine bio-basierte Redox-Flow-Batterie. Redox-Flow-Batterien sind ein spezieller Batterietyp, der sich besonders dadurch auszeichnet, dass Leistung und Speicherkapazität unabhängig voneinander skalierbar sind. Aufgrund dieses Vorteils sowie der langen Lebensdauer, niedrigen Selbstentladungsrate, günstigen Kosten und flexiblen Auslegung wird diese Technologie als sehr vielversprechend für die Zwischenspeicherung von volatilem regenerativem Strom gesehen. Stand der Technik ist die sogenannte Vanadium-Redox-Flow-Batterie, die auf Elektrolyten mit Vanadiumsalzen basiert, die allerdings aufgrund der hohen Kosten, Korrosivität und Giftigkeit problematisch sind. Stattdessen sollen sie in diesem Projekt durch bio-basierte Elektrolyten ersetzt werden, die vorwiegend aus in Pflanzen vorkommenden redoxaktiven Verbindungen bestehen. Auch die Elektroden der Batterie sollen durch bio-basierte Materialien ersetzt werden, die durch Carbonisierung von Pflanzenfasern hergestellt werden. Die Sondierungsphase ist in drei Arbeitspakete aufgeteilt. Zunächst sollen Vorversuche durchgeführt werden, in denen wichtige Informationen zur technischen Realisierbarkeit der Produktidee gewonnen werden. Dazu werden elektrochemische Versuche an zum Einsatz in Redox-Flow-Batterien vorgesehenen biologischen Verbindungen durchgeführt. Parallel dazu wird eine umfangreiche Markt- und Konkurrenzanalyse durchgeführt, die auch die Schutzrechtssituation umfasst. Außerdem soll während der Sondierungsphase die Machbarkeitsphase geplant und geeignete Partner dafür gesucht werden.

Teilprojekt 2

Das Projekt "Teilprojekt 2" wird vom Umweltbundesamt gefördert und von Universität Stuttgart, Institut für Thermodynamik und Wärmetechnik durchgeführt. Die wesentlichen Ziele des Vorhabens sind die Entwicklung eines universellen modularen Wärmespeichers und dessen Erprobung als Solarspeicher in Mehrfamilienhäuser. Wesentliche Merkmale des UniSto-Speichers sind die modulare, platzsparende, effiziente und kostengünstige Realisierung von großen, druckbeaufschlagten Speichervolumina bis ca. 10 m3. Parallel zu der Entwicklung des Speichers für einen fertigungsgerechten Produktionsprozess soll der Einsatz von evakuierbaren Schäumen zur Verringerung des Wärmedurchgangskoeffizienten des Sandwichverbunds und damit zur signifikanten Reduktion der Wärmeverluste des Speichers untersucht werden. Der Aufbau des Speichers könnte hier eine wirtschaftliche Anwendung der Vakuumtechnik ermöglichen. Es soll ein universeller modularer Wärmespeicher mit Wasser als Speichermedium soweit entwickelt werden, dass nach Abschluss des Vorhabens alle Fragen bzgl. Langzeitbeständigkeit, Fertigungsprozess und Handling gelöst sind. Die Werkzeuge für die Herstellung des Sandwichmantels und der Innenbehälter werden entwickelt, konstruiert und beauftragt. Die Produktion des Speichers soll durch damit beauftragte Unternehmen geleistet werden. Des Weiteren soll der Einsatz von evakuierbaren Schäumen zur Verringerung des Wärmedurchgangskoeffizienten des Sandwichverbunds untersucht werden. Zur Erprobung und Optimierung des Speichers werden zwei solarthermische Anlagen mit UniSto-Wärmespeicher in Mehrfamilienhäusern installiert und messtechnisch analysiert.

Entwicklung eines Verfahrens zur Hot Spot Risikobewertung von PV Modulen (AMC Hotspot)

Das Projekt "Entwicklung eines Verfahrens zur Hot Spot Risikobewertung von PV Modulen (AMC Hotspot)" wird vom Umweltbundesamt gefördert und von PI Photovoltaik-Institut Berlin AG durchgeführt. Der Photovoltaik-Markt entwickelt sich ständig weiter, die weltweiten Fertigungskapazitäten für PV-Module setzten die Modulhersteller unter zunehmenden Kostendruck. Zusätzlich kommen bei der Fertigung von PV-Modulen Solarzellen mit unterschiedlichen Eigenschaften - z.B. ‚im Rückwärtsbetrieb' bei Verschattungen - zum Einsatz. In Folge dessen können im Teilverschattungsfall des Moduls (z.B. durch Antennen, Bäume , Schornsteine etc.) lokale Überhitzungen, kurz Hot-Spot's, auftreten. Diese Überhitzungen können die Solarzelle und die Modulverkapselung irreversibel zerstören und somit einen Modulausfall bewirken. Darüber hinaus können auch Zellbrüche sowie Material- oder Metallisierungsfehler das Hot-Spot Risiko zusätzlich erhöhen. Ziel des Vorhabens ist die Entwicklung eines Hotspot-Schnellverfahrens, mit dem PV-Module in größerem Umfang (z.B. im Rahmen der Qualitätssicherung für PV-Kraftwerke) bezüglich ihres Hotspotrisikos untersucht werden können.

1 2 3 4 560 61 62