Die Umweltprobenbank des Bundes (UPB) mit ihren Bereichen Bank für Umweltproben und Bank für Humanproben ist eine Daueraufgabe des Bundes unter der Gesamtverantwortung des Bundesumweltministeriums sowie der administrativen und fachlichen Koordinierung des Umweltbundesamtes. Es werden für die Bank für Umweltproben regelmäßig Tier- und Pflanzenproben aus repräsentativen Ökosystemen (marin, limnisch und terrestrisch) Deutschlands und darüber hinaus für die Bank für Humanproben im Rahmen einer Echtzeitanalyse Blut-, Urin-, Speichel- und Haarproben studentischer Kollektive gewonnen. Vor ihrer Einlagerung werden die Proben auf eine Vielzahl an umweltrelevanten Stoffen und Verbindungen (z.B. Schwermetalle, CKW und PAH) analysiert. Der eigentliche Wert der Umweltprobenbank besteht jedoch in der Archivierung der Proben. Sie werden chemisch veränderungsfrei (über Flüssigstickstoff) gelagert und somit können auch rückblickend Stoffe untersucht werden, die zum Zeitpunkt ihrer Einwirkung noch nicht bekannt oder analysierbar waren oder für nicht bedeutsam gehalten wurden. Alle im Betrieb der Umweltprobenbank anfallenden Daten und Informationen werden mit einem Datenbankmanagementsystem verwaltet und aufbereitet. Hierbei handelt es sich insbesondere um die biometrischen und analytischen Daten, das Schlüsselsystem der UPB, die Probenahmepläne, die Standardarbeitsanweisungen (SOP) zu Probenahme, Transport, Aufbereitung, Lagerung und Analytik und die Lagerbestandsdaten. Mit einem Geo-Informationssystem werden die Karten der Probenahmegebiete erstellt, mit denen perspektivisch eine Verknüpfung der analytischen Ergebnisse mit den biometrischen Daten sowie weiteren geoökologischen Daten (z.B. Daten der Flächennutzung, der Bodenökologie, der Klimatologie) erfolgen soll. Ausführliche Informationen und eine umfassende Datenrecherche sind unter www.umweltprobenbank.de abrufbar.
Das Projekt "Lippe See" wird vom Umweltbundesamt gefördert und von Universität Wuppertal, Institut für Grundbau-, Abfall- und Wasserwesen, Abteilung Bauingenieurwesen, Lehr- und Forschungsgebiet Wasserwirtschaft und Wasserbau durchgeführt. Prognose der Gewässergüte für den Lippesee in Hamm: Die Stadt Hamm befindet sich in einem rasanten Strukturwandel von einem Industriestandort hin zu einem modernen Gewerbe- und Dienstleistungszentrum. Die Stadtteile Hamm und Heessen werden durch die Lippe, den Hamm-Datteln-Kanal und den Hafen bzw. durch ihre Wasserflächen getrennt, ohne dass eine gemeinsame Entwicklung in diesem Stadtraum möglich gewesen wäre. Im Rahmen eines Stadtentwicklungsprojektes (Regionale / Fluss - Stadt - Land) hat die Stadt Hamm Projekte und Flächen benannt, die unter dem Leitbild 'Hamm ans Wasser' entwickelt werden sollen. Die Aufwertung und Entwicklung der bisherigen ungenutzten Wasser- und Fluss begleitenden landwirtschaftlichen Flächen soll zu einer Auen- und Seelandschaft im Innenstadtbereich führen. Für die ca. 60 ha große Seenlandschaft galt es, eine Prognose hinsichtlich der späteren Gewässergüte und ein Bewirtschaftungskonzept zu erstellen. Zusätzlich waren Fragen nach Verlandungen und Uferbewuchs zu beantworten. Für einen solchen See waren die gestellten Fragen und Aufgaben teilweise wissenschaftliches Neuland, da für solche künstlichen Seen dieser Größe wenige Referenzprojekte vorliegen. Hinsichtlich der hydrologischen und hydrogeologischen Randbedingungen wurden umfangreiche Erkundungen durch den Projektträger durchgeführt, die als Grundlage für die Prognose der Gewässergütesituation am Lippesee in Hamm dienen. Die Prognose wird auf der Grundlage der hydrologischen-meteorologischen Situation sowie der Bilanzierung der stofflichen Ein- und Austräge auf der Basis eines numerischen Modells entwickelt. Das Modell basiert auf einem hydrodynamischen und einem ökologisch-biologischen Modellansatz. Die Bewuchsdynamik der Ufer- und Unterwassergesellschaften wurde mittels eines dynamisch-ökologischen Modells betrachtetet, welches bisher in holländischen Gewässern eingesetzt wurde. Die Prognose enthält unterschiedliche Szenarien der Bewirtschaftung, der Klimasituation und der Nutzungsansprüche.
Das Projekt "Phoenix See" wird vom Umweltbundesamt gefördert und von Universität Wuppertal, Institut für Grundbau-, Abfall- und Wasserwesen, Abteilung Bauingenieurwesen, Lehr- und Forschungsgebiet Wasserwirtschaft und Wasserbau durchgeführt. Prognose der Gewässergüte für den Phoenix See in Dortmund: Der ehemalige Industriestandort Phoenix in Dortmund Hörde soll in ein hochwertiges Wohn- und Gewerbeareal entwickelt werden. Kernpunkt der ca. 90 ha großen Entwicklungsfläche soll die Schaffung eines ca. 20 ha großen künstlichen Sees sowie die Renaturierung der Emscher werden und als Hauptattraktor die Standort- und Aufenthaltsqualität prägen. Hinsichtlich der hydrologischen und hydrogeologischen Randbedingungen wurden umfangreiche Erkundungen durch den Projektträger durchgeführt, die als Grundlage für die Prognose der Gewässergütesituation am Phoenix See dienen. Die Prognose wird auf der Grundlage der hydrologischen-meteorologischen Situation sowie der Bilanzierung der stofflichen Ein- und Austräge auf der Basis eines numerischen Modells entwickelt. Das Modell basiert auf einem hydrodynamischen und einem ökologisch-biologischen Modellansatz. Die Prognose enthält unterschiedliche Szenarien der Bewirtschaftung, der Klimasituation und der Nutzungsansprüche.
Das Projekt "Teilprojekt 7" wird vom Umweltbundesamt gefördert und von Technische Universität Darmstadt, Institut IWAR, Fachgebiet Stoffstrommanagement und Ressourcenwirtschaft durchgeführt. Übergeordnetes Ziel von PLASTRAT ist die Entwicklung unterschiedlicher Lösungsstrategien aus den Bereichen Technik, Green Economy und sozial-ökologischer Forschung, die zur Minderung von Plastikeinträgen in das limnische Milieu urbaner Siedlungsräume beitragen. Ziel aller Ansätze von PLASTRAT ist dabei die Ableitung von Bewertungsparametern zur Kategorisierung umweltfreundlicher Kunststoffspezies und definierter Maßnahmen zur Risikominimierung von Plastikrückständen in limnischen Systemen. Das Institut IWAR der TU Darmstadt ist hauptverantwortlich für das Arbeitspaket 1 (AP 1) Mikroplastik im 'urbanen Wasserkreislauf' (vom 01.08.2017 bis 31.10.2017) und AP 2.3 'De- / Adsorption von Stoffen auf Mikroplastik' (vom 01.08.2017 bis 31.07.2020). Für AP 1 wird die TU Darmstadt Informationen und Daten sammeln, die zur Planung und Umsetzung von AP 2.3 genutzt werden. Die Literaturrecherche umfasst Mikroplastik und Schadstoffe in Kläranlagen. Die Hauptaufgabe von IWAR ist AP 2.3, hier wird das Adsorptions- und Desorptionsverhalten ausgewählter Schadstoffe auf Mikroplastik mit bekannter Herkunft und Eigenschaften in einem Langzeittest untersucht. Die Materialien für den Desorptionsversuch des Feldversuchs werden in AP 2.3.1 vorbereitet. Genaue Orte für den Implementierungstest werden ausgewählt und der Implementierungstest in AP 2.3.2 ausgeführt. Die ersten Proben werden im ersten Quartal 2018 gesammelt und im IWAR-Labor analysiert. Die Dauer des Langzeittests beträgt max. 24 Monate. In AP 2.3.3 werden die Messergebnisse des Langzeittests (AP 2.3.2) zusammengetragen und den Stakeholder (AP 6) vorgelegt, zur Bewertung der Umweltfreundlichkeit von Mikroplastik sowie Parameter sowie der Entwicklung von Maßnahmen zur Minimierung der Risiken bestimmter Schadstoffe enthalten, die auf Kunststoffen in den Kläranlagen aufgeladen werden.
Das Projekt "Transport and fate of contaminants (WP EXPO 2)" wird vom Umweltbundesamt gefördert und von Universität Stuttgart, Institut für Wasserbau durchgeführt. Transport processes: The behaviour of contaminants in the water and sediments in river basins cannot be studied without taking into account the relevant processes in the basins and the boundaries with the upstream river system and the coastal region. The rivers that flow into these coastal areas take a considerable amount of contaminated sediments which are stored for longer or shorter periods in these estuaries. Retention of sediments will take place in the low-energy areas such as the smaller tributaries in the river basin. Within this work package various empirical formulations and characteristics will be defined that typically determine the sediment retention (e.g. hydraulic load and specific runoff). The estuarine regions of a river basin represent a diverse and complex water system. The tidal motion and the density currents induced by the change from fresh to saltwater are of particular importance in describing the water quality of estuaries. In the estuary strong intrusion of saltwater landward and current reversal might occur. The coastal area is characterised by the typical oscillations of the tidal movement and has a complicated current structure resulting from the horizontal intrusion of saline water and vertical stratification due to density differences. It is obvious that the estimation of the time and spatial behaviour of the exposure of contaminants in estuaries is complicated by the effects of tidal motion and chemical behaviour. In order to have an accurate description of the fate and distribution of contaminants in estuarine regions, a carefully analysis of model concepts and implementation is needed in this work package to assess the degree of complexity and valid merging of process formulations. Bio-chemical fate processes: Besides transport processes compounds are subject to many distribution and transformation processes or reactions which determine the exposure of contaminants within a river basin. Physico-chemical processes such as sorption, partitioning and evaporation determine the distribution between the water, air and particulate phases. Most compounds are subjected to transformation or degradation reactions, such as hydrolysis, photo-degradation, redox reactions and degradation by micro-organisms. The significance of degradation processes may vary with depth. For several compounds degradation is most prominent in the upper water layers, due to photo-degradation. Biodegradation rates in the lower water column are assumed to be lower. In anoxic sediments, biodegradation rates usually are much slower than in the water column. Many trace metals and persistent organic compounds are strongly bound to particulate phases or dissolved organic material or in the case of trace metals bound to inorganic and organic ligands. Usually only a limited fraction of a specific compound is present in a truly free dissolved state and available for uptake by aquatic organisms. usw.
Das Projekt "Sub project D" wird vom Umweltbundesamt gefördert und von Forschungsverbund Berlin, Leibniz-Institut für Gewässerökologie und Binnenfischerei durchgeführt. Vorhabenziel: Das Vorhaben dient der besseren Prognose der Entwicklung und räumlichen Verteilung von Phytoplankton, insbesondere von Blaualgen, im Tai-See und anderen nährstoffreichen Flachseen. Durch Implementierung der Projektergebnisse in Modelle und Managementpläne werden wichtige Grundlagen für eine optimierte Entnahme und Aufbereitung von Seewasser zur Trinkwasserversorgung geschaffen. Arbeitsplanung: Innerhalb von SIGN trägt dieses Teilprojekt insbesondere zu den Arbeitsbereichen A3 und B2 bei. In A3 werden neue Messsysteme optimiert und die Fluoreszenzsensoren durch HPLC-Pigmentanalysen kalibriert. Die Abhängigkeit der vertikalen und horizontalen Verteilung des Phytoplanktons von meteorologischen Bedingungen wird analysiert. In B2 werden Labor- und Freilandexperimente zur Lichtabhängigkeit des Algenwachstums bei unterschiedlichen Durchmischungsbedingungen durchgeführt. Die gewonnenen Parameter werden in Ökosystemmodelle implementiert. Die Szenarien zur Phytoplanktonentwicklung in Abhängigkeit von Wetter und Klimaänderungen werden mit den Projektpartnern ausgewertet und mit den zuständigen Behörden und Gewässernutzern diskutiert (Arbeitsbereich E). Insbesondere werden Empfehlungen zur Optimierung der Rohwasserentnahme für die Trinkwassergewinnung erstellt (G1). Zudem werden Erfahrungen beim Management deutscher Flachseen und beim Rückhalt organischer Stickstoffverbindungen in Kläranlagen vermittelt (G3).
Das Projekt "Alter Rhein bei Bienen-Praest und Millinger/Hurler Meer" wird vom Umweltbundesamt gefördert und von Universität Köln, Zoologisches Institut, III. Lehrstuhl Physiologische Ökologie durchgeführt.
Das Projekt "Daphnia hybrids" wird vom Umweltbundesamt gefördert und von Universität Konstanz, Limnologisches Institut durchgeführt. Hybrids of the water flea Daphnia occur in many lakes. However, little is known about the factors that cause the success of Daphnia hybrids. In a joint project of two laboratories we study the possible role of biotic interactions in the maintenance of a Daphnia hybrid complex. Daphnia hyalina, D. galeata and their hybrids occur in Bodensee and in Greifensee. The parent species are more abundant in Lake Constance, while hybrids dominate in Greifensee. Both lakes differ in important aspects (morphometry, trophic state), which is reflected by different biotic influences con Daphnia. Compared to Lake Constance, Daphnia in Greifensee are more often exposed to low quality food (toxic blue-greens) and have less of a refuge from fish predation (due the anoxic hypolimnion). Differences between both lakes in the invertebrate predation regime and in the parasite load of Daphnia are very probable. Besides field sampling programmes, we want to establish a collection of about 50 Daphnia clones from both lakes (parent species and hybrids, recent clones and old clones hatched from sediment cores). These clones will be used for life history experiments in the laboratory to test the influences of low quality food, of fish kairomones, of invertebrate predator kairomones and of a protozoan parasite. Food quality and invertebrate predator experiments will be done in Konstanz; parasite and fish experiments will be done in Dübendorf.
Das Projekt "Teilprojekt 10" wird vom Umweltbundesamt gefördert und von Leibniz-Institut für Ostseeforschung durchgeführt. Am IOW wird die Isolierung und Aufreinigung von Mikroplastik (MP) aus Mischwasserentlastungsanlagen, Kläranlagen, Klärschlamm, Gärresten, und Kompostanlagen durchgeführt, wobei insbesondere die Aufarbeitung Organik-reicher Proben optimiert werden wird. Aufreinigung wässriger Proben zur Identifizierung von MP: Wasserproben aus den Transportgefäßen werden über einen 500 Mikro m-Konzentrator größensepariert, um MP größer als 500 Mikro m manuell isolieren und über ein NIR-Spektrometer (microPHAZIR GP des IOW) identifizieren zu können. Die Fraktion wird kleiner als 500 Mikro m wird enzymatisch und chemisch verdaut und aufgereinigt, und anschließend dem IPF zur Identifizierung über Raman oder FT-IR übergeben. Aufarbeitung Organik-reicher Proben: Klärschlammproben werden, angelehnt an den Abschlussbericht Mikroplastik in ausgewählten Kläranlagen des Oldenburgisch- Ostfriesischen Wasserverbandes (OOWV) in Niedersachsen (Mintenig et al., 2014), aufgearbeitet. Im Vergleich zu wässrigen Proben wird Klärschlamm wesentlich aggressiver mit 10 molarer Natronlauge bei 60 Grad Celsius für 24 h oxidiert. Dabei muss in Kauf genommen werden, dass dabei einige Kunststoffe in Mitleidenschaft gezogen werden können. Nach abschließendem Dekantieren kann MP auf 10 Mikro m Edelstahlfiltern aufkonzentriert werden. Die MP-Identifizierung erfolgt wie oben beschrieben. Die Bearbeitung von Klärschlammproben ist als äußerst aggressiv und auch teilweise als Plastik-zerstörend anzusehen. Daher sollen hier alternative Chemikalien und Enzyme zur Aufreinigung von MP getestet werden. Dies wird an definierten gespikten Klärschlammproben durchgeführt. Generell besteht wenig Erfahrung in der Isolierung und Aufarbeitung von MP aus Kompost. Daher werden diese Proben vorerst analog zu Klärschlammproben aufgearbeitet, aber die Aufarbeitung spezifisch optimiert. Die genaue Anzahl der zu untersuchenden Proben wird auf dem Kickoff festgelegt.
Das Projekt "Sub project: Impact of climate variability on the bentho-pelagic coupling in a large river" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum für Umweltforschung GmbH - UFZ, Themenbereich Wasserressourcen und Umwelt, Department für Fließgewässerökologie durchgeführt. Benthic consumers can play an important role in controlling plankton in river systems. The degree of the loss to the benthos is strongly dependent on climate related factors, i.e. temperature and rain fall (water level). Mismatches in the balance between the growth of planktonic organisms and their loss induced by the benthos might strongly influence the ecosystem function. Here we aim to provide a data to explain and predict the benthic impact on the development of different plankton groups in response to changing climate conditions using River Rhine as a model system. Under normal conditions the trophic interactions between benthic and pelagic communities in rivers are much closer than in standing waters. Different approaches including field studies as well as experiments on the bentho-pelagic coupling will be applied. The experiments will be conducted in different flow channels including river bypass systems in order to estimate the impact of benthic key species and benthic communities on the different plankton groups under changing temperature condition. The spatial and temporal dynamics of potential benthic consumers (especially among the biofilm-associated fauna) will be investigated in the field. In addition, based on a long term sampling campaign, the analysis of the dynamics of significant plankton groups will be continued with focus on the impact of climate variations on the plankton composition. If there are significant changes in the matches/mismatches of bentho-pelagic interactions this would have tremendous influences on the functioning of river systems (degradation of organic compounds, etc.). The major aim of our study will be the analysis of conditions for possible mismatches. River systems are generally expected to face the greatest environmental changes with global climatic changes compared to lake or marine systems.