Das Projekt "Einfluss von Aquatal auf die Belebtschlammabsetzbarkeit in einem SBR und auf die folgende Schlammbehandlung" wird vom Umweltbundesamt gefördert und von Technische Universität München, Fakultät für Bauingenieurwesen und Vermessungswesen, Institut für Wasserwesen, Lehrstuhl und Prüfamt für Wassergüte- und Abfallwirtschaft durchgeführt. Ziel dieses Projektes ist es, die Auswirkungen von Aquatal auf die Leistung einer SBR-Anlage mit nachgeschalteter Schlammfaulung zu ueberpruefen. Aquatal ist ein mineralisches Pulver, das aus Magnesiumsilikat und Chlorit besteht. Es wurde von der franzoesischen Firma Luzenac Europe entwickelt, um die Absetzbarkeit des Belebtschlammes zu verbessern und insbesondere um Blaehschlammprobleme zu loesen. Die Adhaesion von Aquatal an den Schlamm fuehrt zu einer sofortigen Beschwerung der Flocken, die sich dann schneller absetzen koennen. Anhand dieser Untersuchungen soll gezeigt werden, ob diese bekannten Effekte auch im SBR auftreten, und ob der Aquatal-geladene Schlamm sich in der anaeroben Faulungsphase so gut stabilisieren laesst wie ohne Aquatal.
Das Projekt "Im Fokus des Projektes NORLED steht die Herstellung einer neuen Technologie für energieeffiziente, weiße Leuchtdioden auf Basis fluoreszierenden Siliziumkarbids, die im Vgl. zum Stand der Technik umweltfreundlicher und kostengünstiger ist" wird vom Umweltbundesamt gefördert und von Universität Erlangen-Nürnberg, Department Werkstoffwissenschaften, Lehrstuhl Werkstoffe der Elektronik und Energietechnik. Arbeitsgruppe Crystal Growth durchgeführt. Im Gesamtprojekt NORLED (N-INNER) werden weiße Leuchtdioden auf Basis von fluoreszierendem SiC (f-SiC) hergestellt. Die Innovation des f-SiC liegt in der definierten Misch-Dotierung des Halbleiters SiC mit N, und vor allem Al und B. Zur Bauelementherstellung kommt der sog. Fast Sublimation Growth Prozess (FSGP) des Projektpartners IFM M.SYVÄJÄRVI zum Einsatz, welches ohne umweltgefährliche metallorganische Prekursoren, wie bei den Standard GaN Leuchtdioden auskommt. Das vorliegende Teilprojekt (IMS P.WELLMANN) bildet das Materialfundament des Gesamtprojektes und stellt speziell dotierte SiC-Substrate und Ausgangsmaterialien für den FSG-Prozess zur Verfügung. Zum Einsatz kommt das von P. Wellmann entwickelte, sog. Modifiziertes PVT (physical vapor transport), das Dotierstoffe über eine extra Gasleitung in die Wachstumszelle einleitet. Die hochauflösende Transmissionselektronenmikroskopie im Teilprojekt FOE E.SPIECKER bildet das Fundament der Materialcharakterisierung. WISSENSCHAFTLICH-TECHNOLOGISCH steht die Ausbalancierung der Dotierstoffe N, Al und B zur Erzeugung von weißem Licht im Fokus. (1) Bereitstellung von Ausgangsmaterialien für den FSG-Prozess (poly-SiC dotiert mit N, Al und B). (2) Herstellung von kristallinen SiC-Wafern (50mm und 75mm) dotiert mit N, Al und B. (3) Optimierung der Bauelement-Farbe Weiß durch Variation der Dotierung (4) Korrelation Dotierung mit Kristalldefekten. Die deutschen Teilprojekte ergeben bereits in sich eine sinnvoll abgeschlossene Einheit.
Das Projekt "Teilvorhaben 4: Bau und Testung des Funktionsmusters" wird vom Umweltbundesamt gefördert und von MIOBA Mitteldeutscher Industrie-Ofenbau GmbH & Co. KG durchgeführt. Ziel des Vorhabens ist es, einen Hochtemperaturrekuperator mit einer verbesserten Wärmeübertragung auf der Basis von Füllungen zu entwickeln. Dazu ist ein hochtemperatur- und abgasstabiles Schutzschichtsystem notwendig, das a) mit einfachen fertigungstechnischen Möglichkeiten zu applizieren ist, b) über thermische Stabilität in oxidierender Atmosphäre bis etwa 1300 C verfügt, c) den Wärmeübergang von der Abluft auf den Rekuperatorwerkstoff nicht oder nur unwesentlich beeinflusst und d) wirtschaftlich herzustellen ist. Der Erfolg des Prinzips soll für 2 Konfigurationen a) an einem Funktionsmuster 'Zentralrekuperator' aus hitze- und zunderbeständigem Stahl als Mantelwerkstoff und einer modifizierten SiC-Füllung als kostengünstige Variante und b) an einem Funktionsmuster 'integrierter Brennerrekuperator' aus SiSiC als Mantelwerkstoff und einer modifizierten SiC-Füllung nachgewiesen werden. Das Vorhaben wird in einzelne Arbeitspaketen realisiert. Immanenter Bestandteil der Projektarbeiten sind die Meilensteinplanung und die Erfolgskontrolle. Die Kooperation der Partner miteinander wird über eine Kooperationsvereinbarung geregelt. Ein ständiger Abgleich von Teilergebnissen hinsichtlich ihrer Praxisrelevanz wird durchgeführt.
Das Projekt "Teilvorhaben: Entwicklung amorpher und mikrokristalliner Halbleiter mittels VHF PECVD und Vergleich mit Hot-Wire CVD" wird vom Umweltbundesamt gefördert und von Technische Universität Dresden, Institut für Halbleiter- und Mikrosystemtechnik durchgeführt. In diesem Verbundprojekt sollen neuartige Elektrodenmaterialien entwickelt werden, die sich durch drei wesentliche Materialeigenschaften auszeichnen: Hohe Passivierwirkung, sehr gute optische Eigenschaften und elektrische Leitfähigkeit. Es werden Elektroden entwickelt, die auf dielektrischen Schichten basieren und mit der PERC Anlagentechnik und Prozessführung kompatibel sind. Weiterhin werden Elektroden mit verbesserter Transparenz und besserer passivierender Wirkung für a Si:H/c Si Heterokontaktsolarzellen angestrebt. Für TUD: Ziel des Teilvorhabens ist die Entwicklung amorpher und mikrokristalliner Halbleiter mittels VHF PECVD und Vergleich mit Hot-Wire CVD. Es werden drei wissenschaftliche Ansätze verfolgt. Zum einen sollen heutige dielektrische Passivierungsschichten durch Dotierung und Einführung von Laminatstrukturen weiterentwickelt werden. Im zweite Ansatz werden amorphe und mikrokristallinen Halbleitern mit hohen Bandlücken (a SiOx, a SiC und Mikro c SiOx) entwickelt. Um die Passivierungswirkung dieser Materialien weiter zu erhöhen, werden im dritten Ansatz neue Abscheideverfahren mit extrem geringer Grenzflächenschädigung für Heterokontakt-Solarzellen entwickelt. Für die drei Ansätze werden zunächst die neue Prozessanlagentechnik und die entsprechenden Prozesse entwickelt. Danach findet die Materialentwicklung und abschließende die Demonstration und Verifikation in funktionierenden Solarzellen statt.
Das Projekt "Teilvorhaben FAP GmbH: Entwicklung einer Hot-Wire Linienquelle und einer PECVD Abscheidung mit Plasmafrequenzen bis 200 MHz" wird vom Umweltbundesamt gefördert und von FAP Forschungs- und Applikationslabor Plasmatechnik GmbH Dresden durchgeführt. In diesem Verbundprojekt sollen neuartige Elektrodenmaterialien entwickelt werden, die sich durch drei wesentliche Materialeigenschaften auszeichnen: hohe Passivierwirkung, sehr gute optische Eigenschaften und elektrische Leitfähigkeit. Es werden Elektroden entwickelt, die auf dielektrischen Schichten basieren und mit der PERC Anlagentechnik und Prozessführung kompatibel sind. Weiterhin werden Elektroden mit verbesserter Transparenz und besserer passivierender Wirkung für a-Si:H/c-Si Heterokontaktsolarzellen angestrebt. FAP: Ziel des Teilvorhabens ist die Entwicklung einer Hot-Wire Linienquelle und einer PECVD Abscheidung mit Plasmafrequenzen bis 200 MHz für diese Aufgabenstellung. Es werden drei wissenschaftliche Ansätze verfolgt. Zum einen sollen heutige dielektrische Passivierungsschichten durch Dotierung und Einführung von Laminatstrukturen weiterentwickelt werden. Im zweiten Ansatz werden amorphe und mikrokristalline Halbleiter mit hohen Bandlücken (a-SiOx, a-SiC und Mikro c-SiOx) entwickelt. Um die Passivierungswirkung dieser Materialien weiter zu erhöhen, werden im dritten Ansatz neue Abscheideverfahren mit extrem geringer Grenzflächenschädigung für Heterokontakt-Solarzellen entwickelt. Für die drei Ansätze werden zunächst die neue Prozessanlagentechnik und die entsprechenden Prozesse entwickelt. Danach finden die Materialentwicklung und abschließend die Demonstration und Verifikation in funktionierenden Solarzellen statt.
Das Projekt "Teilvorhaben 1" wird vom Umweltbundesamt gefördert und von O-Flexx Technologies GmbH durchgeführt. Im Allgemeinen gehen ca. 65 % der Primärenergie als Abwärme verloren. Durch Abwärmenutzung mittels Thermogeneratoren (TEG) aus nicht- toxischen Mg- und Mn-Siliziden ist eine Reduzierung der CO2-Emisionen und Steigerung der Energieeffizienz möglich. O-Flexx ersetzt den konventionellen TEG-Ansatz durch einen Dünnschicht-TEG: eine Silizidscheibe wird auf einer Metallfolie aufgebaut und vereinzelt. Der TE-Chip wird auf einen wärmeleitenden Träger aufgesetzt und an den heißen bzw. kalten Flächen angebunden. Diese Technologie ist für die Herstellung von Bi2Te3-TE-Chips bei O-Flexx vorhanden und wird für Silizid-Chips erweitert. Die Vorteile gegenüber konventionellen TEG sind: bis 10-fache Masse- und Materialeinsparung, anpassbarer thermischer Widerstand, Steigerung der verfügbaren Temperaturdifferenz und automatisierte Fertigung in einer verfügbaren Produktionslinie. Das Projekt umfasst die Herstellung im Labormaßstab, sowie das Upscaling bis hin zur Charakterisierung der Silizid-Chips in einer 'Power Cell'.
Das Projekt "Teilprojekt 3: Verbundstoffe" wird vom Umweltbundesamt gefördert und von IAB - Institut für Angewandte Bauforschung Weimar gemeinnützige GmbH durchgeführt. Ziel des beantragten Forschungsvorhabens ist es, die Rezyklierbarkeit von Verbundbaustoffen zu verbessern. Dazu sollen aus mehreren Komponenten bestehende, mittels mineralischer Kleber zusammengefügte Verbundwerkstoffe so gestaltet werden, dass sie beim Rückbau oder bei der anschließenden Aufbereitung getrennt werden können. Die Verbindungen sollen durch Zugabe mikrowellensensibler Bestandteile modifiziert werden, um sie durch eine entsprechende Behandlung In Place oder In Plant trennen zu können. Das zu entwickelnde Verfahren könnte auch bei der Sanierung von Bauwerken genutzt werden. Die mikrowellensensiblen Zusätze dürfen den Primärverbund nicht beeinträchtigen, die Verwertung nicht störend beeinflussen und selbst keine kritischen Rohstoffe darstellen. Diese Forderungen sind erfüllbar, wenn Graphit, Siliciumcarbid oder Eisenoxide eingesetzt werden. Das Projekt wird von der BUW koordiniert. Alle in Zusammenhang mit der Entwicklung und dem Aufbau des Demonstrators stehenden Themen werden vom Fraunhofer ICT und der Firma MUEGGE GmbH (Mikrowellenspezialist) übernommen. Auswahl, Beschaffung und Untersuchung der Additive und Binder übernehmen die BUW, Baumit (Verbundwerkstoffe) und GK (Suzeptoren). Für Werkstoffuntersuchungen und Applikationsversuche ist das IAB verantwortlich.
Das Projekt "Teilvorhaben: Erforschung innovativer Materialien und Prozesse für optoeletronische Bauelemente auf der Basis von GaAs und SiC" wird vom Umweltbundesamt gefördert und von Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik im Forschungsverbund Berlin e.V. durchgeführt. Die drei Forschungsinstitute FBH, HHI und IAF werden im Rahmen dieses Vorhabens gemeinsam die in der Literatur vorhandenen toxikologisch relevanten Materialdaten der als prioritär eingestuften Verbindungshalbleiter sichten. Das FBH ist dabei für GaAs und SiC zuständig. Die Ergebnisse werden in einer Literatur-Datenbank zusammentragen. Durch Prüfung der verfügbaren Daten werden Datenlücken identifiziert und an die Verbundpartner kommuniziert. Eine Kurzform der Ergebnisse wird dann in ein für den Datenaustausch mit EU-Institutionen kompatibles Datenbankformat übertragen. Nur auf diese Weise sind sie auch unmittelbar, z.B. für die Erstellung eines REACH Dossiers. An den Instituten HHI und FBH werden Freisetzungspotentiale von Stoffen in der Produktion und dessen Umfeld untersucht. Die Messstrategie für die einzelnen Herstellungsschritte wird am FBH exemplarisch für GaAs durchgeführt. Dabei wird analog zu allen einschlägigen Normen vorgegangen. Die Messkampagnen gliedern sich entlang der Prozessschritte. Sie erfolgen in der Zu- und Umluft sowie an potenziell gefährdeten Arbeitsplätzen. Prozessabwässer werden auf Bestandteile der Ausgangsstoffe untersucht und mit den jeweiligen Löslichkeiten korreliert.
Das Projekt "Teilprojekt 5: Suszeptoren" wird vom Umweltbundesamt gefördert und von AMG Mining AG durchgeführt. Ziel des beantragten Forschungsvorhabens ist es, die Rezyklierbarkeit von Verbundbaustoffen zu verbessern. Dazu sollen aus mehreren Komponenten bestehende, mittels mineralischer Kleber zusammengefügte Verbundwerkstoffe so gestaltet werden, dass sie beim Rückbau oder bei der anschließenden Aufbereitung getrennt werden können. Die Verbindungen sollen durch Zugabe mikrowellensensibler Bestandteile modifiziert werden, um sie durch eine entsprechende Behandlung In Place oder In Plant trennen zu können. Das zu entwickelnde Verfahren könnte auch bei der Sanierung von Bauwerken genutzt werden. Die mikrowellensensiblen Zusätze dürfen den Primärverbund nicht beeinträchtigen, die Verwertung nicht störend beeinflussen und selbst keine kritischen Rohstoffe darstellen. Diese Forderungen sind erfüllbar, wenn Graphit, Siliciumcarbid oder Eisenoxide eingesetzt werden. Das Projekt wird von der BUW koordiniert. Alle in Zusammenhang mit der Entwicklung und dem Aufbau des Demonstrators stehenden Themen werden vom Fraunhofer ICT und der Firma MUEGGE GmbH (Mikrowellenspezialist) übernommen. Auswahl, Beschaffung und Untersuchung der Additive und Binder übernehmen die BUW, Baumit (Verbundwerkstoffe) und GK (Suzeptoren). Für Werkstoffuntersuchungen und Applikationsversuche ist das IAB verantwortlich.
Das Projekt "Teilvorhaben: Entwicklung von Leistungsmodulen für die Mittelspannung" wird vom Umweltbundesamt gefördert und von SEMIKRON Elektronik GmbH & Co. KG durchgeführt. Ziel des Vorhabens ist hochintegrierte und effiziente Leistungselektronik mit Hochvolt-SiC-Bauelementen von 6.5 kV bis 15 kV zu entwickeln. Es werden von Semikron zwei Demonstratorklassen von SiC-Halbleitermodulen entwickelt. Die Zielsetzungen hierbei sind Module mit 6.5 kV / 20 A und 15 kV / 6 A zu demonstrieren. Die zuverlässige Aufbau- und Verbindungstechnik (AVT) im Modul mit Sinter-und Lötverbindungen sowie die niederinduktive Kontaktierung der SiC-Bauelemente sind bei diesen Spannungsklassen eine vollkommen neue Herausforderung. Neben dem Modulkonzept werden in der Anfangsphase Überlegungen auf der Basis von numerischen Simulationen der mechanischen und elektrischen Eigenschaften durchgeführt. Zur vereinfachten Parallelschaltung der SiC Schalter werden spezielle Supressordioden entwickelt. Nach dem die Entwicklung der AVT für 6,5kV und 15kV mit entsprechenden Material und Designkonzepten abgeschlossen ist, werden die Moduldemonstratoren in AP4 aufgebaut.
Origin | Count |
---|---|
Bund | 105 |
Type | Count |
---|---|
Förderprogramm | 105 |
License | Count |
---|---|
open | 105 |
Language | Count |
---|---|
Deutsch | 105 |
Englisch | 2 |
Resource type | Count |
---|---|
Keine | 18 |
Webseite | 87 |
Topic | Count |
---|---|
Boden | 52 |
Lebewesen & Lebensräume | 43 |
Luft | 48 |
Mensch & Umwelt | 105 |
Wasser | 29 |
Weitere | 105 |