API src

Found 789 results.

EnStadt-ZED: Zwickauer Energiewende Demonstrieren, Teilvorhaben: Mobile Energiespeicher in Wohnquartieren

Die Firma Autoservice Demmler wird in diesem Projekt die Bereiche Elektromobilität, Ladeinfrastruktur und Speichertechnologien begleiten. Bereits seit dem Jahr 2008 befasst sich ASD mit Elektrofahrzeugen. Seit dem Jahr 2014 konnte mit einem Mietpool von derzeit rund 45 rein elektrischen Fahrzeugen ein enormes Wissen auf diesem Gebiet erworben werden. Bei Autoservice Demmler erfolgten bereits wissenschaftliche Erhebungen und Auswertungen im Bereich Elektrofahrzeuge, zu Mobilitätskonzepten und Kundenerfahrungen. Im Projekt soll des Weiteren eine Wärmeauskopplung bei Redox-Flow-Speicher ermöglicht werden. Bevor im zentralen Ansatz ein Redox-Flow-Speicher eingesetzt wird, soll im Vorfeld die Aus-kopplung der Wärme an einem bestehenden Redox-Flow-Speicher getestet und optimiert werden. ASD engagiert sich bereits seit Jahren im Bereich Umweltschutz und regenerativer Energieerzeugung. Auf dem Betriebsgelände befindet sich bereits ein Redox-Flow-Speicher an Welchem in den ersten beiden Jahren des Projektes eine prototypische Entwicklung stattfinden wird. Im Bereich Ladeinfrastruktur ist es Ziel eine Ladesäule zu entwickeln. Für zukünftige Schnellladungen sind verschiedene Systeme am Markt. Die geplante Ladesäule soll alle vereinen und demonstrativ bei Autoservice Demmler umgesetzt werden um einen Rollout für die Modellregion zu ermöglichen. Dazu wird eine spezielle DC-Ladesäule mit Anschlüssen für CCS, Chademo und Meneckes als Prototyp entwickelt. Das umfassende Wissen in den Bereichen Elektromobilität, Ladeinfrastruktur und Speichersystemen macht Autoservice Demmler zum Vorreiter in der Region, und wird maßgeblich zu einer erfolgreichen Umsetzung im Projekt ZED beitragen.

Teilvorhaben BLS: Planung und Realisierungsüberwachung^Forschungscampus Mobiliy2Grid: Themenfeld 2 - Smart Grid Infrastrukturen^Teilvorhaben HTW: Gebäude als Komponente des energetischen Gesamtsystems^Teilvorhaben DB Energie: Virtuelle Kraftwerke und Integration von Ladeinfrastrukturen^Teilvorhaben Schneider Electric: Betriebsszenarien, Teilvorhaben Fraunhofer ISE: Einbindung von Elektromobilität in Mikro-Smart-Grids

Der Forschungscampus Mobilty2Grid liefert innovative Konzepte und Lösungen für Energiewende und Elektromobilität in vernetzten urbanen Arealen. Insbesondere die Einbindung der Elektromobilität in Mikro Smart-Grids steht im Vordergrunddes Arbeitspakets (AP) in das das Fraunhofer ISE seine Kompetenzen einbringt. Im AP 2.2.3 wird eine praxistaugliche Ausbaustrategie für Fahrzeugflotten-Areale entwickelt. Hierzu werden Systemarchitekturen und auch die unterschiedlichen technologischen Stränge der möglichen Ladetechniken systemisch verglichen (z.B. auch bidirektional und induktiv). Die technischen Voraussetzungen sowie die entstehenden Mehrwerte die sich durch die Einbindung der unterschiedlichen Generationen an Ladeinfrastruktur ergeben werden untersucht. Darauf aufbauend findet im AP eine reale Umsetzung der markttechnischen Einbindung eines Teils der Ladeinfrastruktur statt. Erprobung und Demonstration auf dem EUREF-Campus schließen sich an und schaffen erstmals die Basis für eine zukünftige Einpreisung von Smart-Grid-Services.

Leuchttürme eMobilität, FlyGrid: Flywheel Energy Storage for EV Fast Charging and Grid Integration

The transition from fossil fuel based transportation to clean electric mobility must be considered one of the crucial steps of decarbonization. In this sense, reducing the import of oil to gain political independence is as important as mitigating global warming due to CO2 emissions according to the international climate goals. Even though the strong projected increase of electric vehicles must be seen as a rather positive development, a number of new related challenges will arise for energy supply companies, grid operators, vehicle and charging station manufacturers and finally the customers. Especially the continuously rising charge power in combination with an increasing supply by volatile sources result in high loads on the grid which may cause instabilities and - in the worst case - even blackouts. Still, the development of fast charging station with 100 kW and more is absolutely necessary to combat range anxiety attributed to EVs. Among experts, the lack of charging infrastructure is considered the biggest threat for electric mobility. In order to avoid a costly grid expansion and still provide a comprehensive network of fast charging stations, new innovative solutions need to be found. Within project FlyGrid a high-performance flywheel energy storage system (FESS) will be integrated in a fully automated fast charging station. Even with only a low voltage distribution grid at hand, high charge power can be reached while at the same time stabilizing the grid. The system is suitable to integrate local renewable sources - for instance PV-modules on a car port - and hence contributes to increase the share of clean energy in the electricity mix. Superior cycle life of the energy storage device, the ability to feed high power back into the grid as well as easy transportability in the form of a mobile 'fast charging box' (for electric construction machinery or similar) are further characteristics of the FlyGrid concept. FlyGrid is a disruptive technology, which can be developed and manufactured in Austria and plans to reach the following top-level goals with high socio-economic impact: - Reduction of charging times of EVs and increase of EV market penetration - Higher customer satisfaction through improved charging network - Avoidance of a costly electric grid expansion - Improved integration of volatile renewables sources for EV propulsion - Improved grid stability and power quality - Portable fast charging solution for zero emission construction equipment or events The versatile, interdisciplinary consortium consisting of two research institutions and nine industry partners, the world's first combination of flywheel energy storage, highly innovative, fully automated EV charging (easelink MATRIX CHARGING) and the integration of local renewables (Secar E-Port) all stress the uniqueness of the project.

ZnMobil - Mechanisch und elektrisch wiederaufladbare Zink-Luft-Batterie für automobile Anwendungen, ZnMobil - Mechanisch und elektrisch wiederaufladbare Zink-Luft-Batterie für automobile Anwendungen

Der Elektromobilität kommt bei der Erreichung der ehrgeizigen Ziele der Energiewende eine Schlüsselrolle zu. Die gegenwärtig verfügbaren Lithium-Ionen-Batterien sind aufgrund ihrer Energiedichten und der sich daraus ergebenden limitierten Reichweiten nur bedingt für den Einsatz in reinen Elektrofahrzeugen geeignet. Zukünftige Batteriesysteme sollten dagegen deutlich höhere Energiedichten aufweisen. Hier sind besonders Metall-Luft-Systeme zu nennen. Solche Systeme sind als Primärbatterien in kleinerem Maßstab für Elektronikanwendungen schon länger bekannt und kommerziell erhältlich. Ziel des Vorhabens ist die Entwicklung einer skalierbaren Zink-Luft-Batterie für mobile Anwendungen, die sowohl mechanisch, also durch Austausch des Elektrolyten als auch elektrisch wieder aufgeladen werden kann. Im Rahmen des Vorhabens werden von der Grillo-Werke AG Zinkpulver produziert und bereitgestellt. Schwerpunkt der Forschungs- und Entwicklungsarbeit wird auf die Herstellung geeigneter Zinkpulverlegierungen, Partikelform und Partikelverteilung gelegt. Die Zinkpulver müssen im alkalischen Elektrolyten stabil bleiben und zu einer hohen Energiedichte führen. Die zu entwickelnden Zinkpulver werden auf Produktionsanlagen hergestellt, so dass eine spätere industrielle Herstellung direkt gewährleistet ist. Für die Slurry wird ein sehr feines und rundes Zn-Pulver mit einer engen Partikelgrößenverteilung benötigt Für die Prozessentwicklung und Herstellung in den Produktionsanlagen wird eine spezielle Atomisierungseinheit entwickelt und gebaut. Diese würde dann im Rahmen des Projektes in die Anlage zur Produktion eingebaut werden. Ferner muss für die Prozesssteuerung eine kontinuierliche Überwachung der Partikelgrößenverteilung integriert werden. In der Summe wird dafür ein Investitionsbedarf von ca. 50T€ abgeschätzt.

ZnMobil - Mechanisch und elektrisch wiederaufladbare Zink-Luft-Batterie für automobile Anwendungen, ZnMobil - Mechanisch und elektrisch wiederaufladbare Zink-Luft-Batterie für automobile Anwendungen

Der Elektromobilität kommt bei der Erreichung der ehrgeizigen Ziele der Energiewende eine Schlüsselrolle zu. Die gegenwärtig verfügbaren Lithium-Ionen-Batterien sind aufgrund ihrer Energiedichten und der sich daraus ergebenden limitierten Reichweiten nur bedingt für den Einsatz in reinen Elektrofahrzeugen geeignet. Zukünftige Batteriesysteme sollten dagegen deutlich höhere Energiedichten aufweisen. Hier sind besonders Metall-Luft-Systeme zu nennen. Solche Systeme sind als Primärbatterien in kleinerem Maßstab für Elektronikanwendungen schon länger bekannt und kommerziell erhältlich. Ziel des Vorhabens ist die Entwicklung einer skalierbaren Zink-Luft-Batterie für mobile Anwendungen, die sowohl mechanisch, also durch Austausch des Elektrolyten, als auch elektrisch wieder aufgeladen werden kann. Eine mechanisch wiederaufladbare Batterie bietet den Vorteil von sehr kurzen Ladezeiten, während die elektrische Wiederaufladbarkeit deutlich geringere Anforderungen an die notwendige Infrastruktur stellt, aber längere Ladezeiten benötigt. Ein Batteriesystem, das beide Funktionalitäten aufweist, bietet daher den größten Kundennutzen. Im Projektverlauf werden alle Kernkomponenten der neuen Zink-Luft-Batterie bearbeitet. Für dieses Vorhaben hat sich ein Konsortium bestehend aus der Covestro Deutschland AG, der Grillo Werke AG, der Varta Microbattery AG, der Zentrum für Brennstoffzellentechnik GmbH, der TU Bergakademie Freiberg, dem Lehrstuhl Energietechnik der Universität Duisburg-Essen, der Leibniz Universität Hannover und der Accurec Recycling GmbH zusammengefunden. Die Partner besitzen langjährige fundierte Erfahrungen und Know-how auf den Gebieten Batterietechnologie, Brennstoffzelle und Elektrolyse sowie Werkstoffwissenschaften, Zink-Herstellung und - Recycling. Die Schwerpunkte des ZBT liegen in der elektrochemischen Slurry-Charakterisierung, der elektrochemischen und strömungstechnischen Simulation sowie der Entwicklung von geeigneten Stromableitern auf Kompositbasis.

H2020-EU.3.4. - Societal Challenges - Smart, Green And Integrated Transport - (H2020-EU.3.4. - Gesellschaftliche Herausforderungen - Intelligenter, umweltfreundlicher und integrierter Verkehr), fASt and Smart charging solutions for full size URban hEavy Duty applications (ASSURED)

The ASSURED Project proposal addresses the topic GV-08-2017, 'Electrified urban commercial vehicles integration with fast charging infrastructure' of the Green Vehicle work programme. A 39-member consortium from 12 different EU Member States will conduct the work. The overall objectives of ASSURED are: - Analysing the needs of the cities, operators and end-users to derive the requirements and specifications for the next generation of electrically chargeable heavy-duty (HD) vehicles (i.e. buses), medium-duty (MD) trucks and light duty vehicles for operation within an urban environment; - Improving the total cost of ownership (TCO) through better understanding of the impact of fast charging profiles on battery lifetime, sizing, safety, grid reliability and energy- efficiency of the charger-vehicle combination; - Development of next generation modular high-power charging solutions for electrified HD and MD vehicles; - Development of innovative charging management strategies to improve the TCO, the environmental impact, operational cost and the impact on the grid stability from the fleet upscaling point of view; - Demonstration of 6 electrically chargeable HD vehicles (public transport buses), 3 MD trucks (2 refuse collections & 1 delivery truck) and 1 light duty vehicle with automatic fast charging; - Development of interoperable and scalable high power charging solutions among different key European charging solution providers; - Demonstration of energy and cost efficient wireless charging solutions up to 100 kW for an electric light duty vehicle (VAN); - Evaluating the cost, energy efficiency, impact on the grid of the different use cases, noise and environmental impact of the ASSURED solutions; - To actively support the take?up of business cases and exploitation of project results across Europe of the use cases by partner cities (Barcelona, Osnabruck, Goteborg, Brussels, Jaworzno, Munich, Eindhoven, Bayonne, Madrid) and end users.

D-SEe - Durchgängiges Schnellladekonzept für Elektrofahrzeuge, Teilvorhaben: Effiziente und Skalierbare Ladetechnologie und BMS

Für die nächsten Jahre wird von den Automobilherstellern der Einbau von Traktionsbatterien (ca.100kWh) angekündigt, die Reichweiten von bis zu 500km ermöglichen. Ladesäulen mit heutiger Ladeleistung (50kW) benötigen bei dieser Batteriegröße ca. 1,6 h, um 80% der Batteriekapazität, ausreichend für 400km Reichweite, nachzuladen. Das Ziel des Gesamtprojekts ist, die Ladedauer für 80% Vollladung auf eine 1/4 h zu reduzieren. Ziel des Teilprojektes ist die Entwicklung und prototypische Umsetzung modularer Leistungselektronik für die Umsetzung von Ladesäulen mit Leistung von über 300 kW, unter Berücksichtigung der Anforderungen der Schnittstelle zum Elektrofahrzeug.

D-SEe - Durchgängiges Schnellladekonzept für Elektrofahrzeuge, Teilvorhaben: Topologien für BMS und Leistungselektronik zur effizienten DC-Ladung bis 350kW

Für die nächsten Jahre wird von den Automobilherstellern der Einbau von Traktionsbatterien (ca.100kWh) angekündigt, die Reichweiten von bis zu 500km ermöglichen. Ladesäulen mit heutiger Ladeleistung (50kW) benötigen bei dieser Batteriegröße ca. 1,6 h, um 80% der Batteriekapazität, ausreichend für 400km Reichweite, nachzuladen. Das Ziel des Gesamtprojekts ist, die Ladedauer für 80% Vollladung auf eine 1/4 h zu reduzieren. Im Gesamtverbund wird sich das Scienlab engineering center hauptsächlich mit den Teilprojekten 1,2,3,5+6 beschäftigen und zusätzlicher Mitarbeit in Teilprojekt 4. Dabei stehen die folgende Schwerpunkte im Fokus: 1) Entwicklung und Systemspezifizierung eines geeigneten BMS das einen Lademanager integriert hat und mit seiner Leistungsfähigkeit den Anforderungen an Ladeleistung, thermische Entwicklung und Sicherheit im angestrebten Anwendungsfall ausgelegt ist. 2) Erarbeitung eines zukunftsfähigen Gesamtkonzeptes für DC Ladeinfrastruktur welche technologisch und gesamtwirtschaftlich möglichst hohe Effizienzen bietet.

DiTour-EE - Digitale Lösungen für smarten Tourismus durch Sektorkoppelung von Elektromobilität und Energie, Teilvorhaben: Flex-, Lade- und Energiemanagementstrategien (FLEMS)

Das Fraunhofer IEE ist in diesem Projekt hauptverantwortlich für die Entwicklung der Flexibilitäts-, Lade- und Energiemanagementstrategien. Diese bilden den Mobilitätsbedarf des Kunden, den Hotellastbedarf und den Flexibilitätsbedarf in Richtung Netzbetreiber und Energieversorgungsunternehmen optimiert ab. Damit einher geht die Entwicklung eines Planungstool zur optimalen Investition in die Ladeinfrastruktur von Hotels. Ein solches Tool erlaubt es, den E-Mobilitätsbedarf anwendungsfallgerecht zu unterstützen und bietet eine Möglichkeit, neue Anwendungsfälle simulativ zu beurteilen.

charge4C - Intelligentes Teilen, Parken, Laden: Reservierungsplattform für die Elektromobilität, Teilvorhaben: charge4C.ladenetz

Im Januar 2018 startete das vom Bundesministerien für Wirtschaft und Energie (BMWi) geförderte Projekt 'charge4C - Intelligentes Teilen, Parken, Laden: Reservierungsplattform für Elektromobilität' im Förderprogramm IKT für Elektrombilität III. Das Ziel von charge4C ist die Erstellung einer innovativen Sharing-Plattform, die eine dynamische Bepreisung des Parkens und Ladens ermöglicht und Communitys und entsprechende Dienste rund um Ladesäulen im privaten und öffentlichen Bereich organisieren kann. Dadurch werden Bürger verstärkt in den Aufbau der Ladeinfrastruktur mit eingebunden, die Netzauslastung optimiert und Lastspitzen vermieden. Die angebotenen Services im Bereich der E-Mobilität, der Strompreis als auch der Preis für das Parken kann an Ladesäulen variieren, je nach aktuellem Stromangebot und Standort. Die Eigentümer der Flächen, auf denen Ladesäulen errichtet werden, partizipieren an den Einnahmen. Jede Säule ist sensorisch so ausgestattet, dass über die digitale Steuerungsplattform nicht nur der Servicepreis ermittelt, sondern auch ihr spezifisches Ladeprofil aufgezeichnet wird. So können weitere geeignete Ladestandorte in den Projektregionen um Saarlouis und Köln bedarfsgerecht identifiziert werden.

1 2 3 4 577 78 79